高等數(shù)學(xué)二范文
時間:2023-04-08 12:45:22
導(dǎo)語:如何才能寫好一篇高等數(shù)學(xué)二,這就需要搜集整理更多的資料和文獻(xiàn),歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。
篇1
本大綱適用于經(jīng)濟(jì)學(xué)、 管理學(xué)以及職業(yè)教育類、 生物科學(xué)類、 地理科學(xué)類、 環(huán)境科學(xué)類、 心理學(xué)類、藥學(xué)類(除中藥學(xué)類外)六個一級學(xué)科的考生。
總要求
本大綱內(nèi)容包括“高等數(shù)學(xué)”及“概率論初步”兩部分,考生應(yīng)按本大綱的要求了解或理解“高等數(shù)學(xué)”中極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)和多元函數(shù)微分學(xué)的基 本概念與基本理論;了解或理解“概率論”中古典概型、離散型隨機(jī)變量及其數(shù)字特征的基本概念與基本國際要聞 學(xué)會、掌握或熟練掌握上述各部分的基本方法,應(yīng)注意各部分知識 的結(jié)構(gòu)及知識的內(nèi)在聯(lián)系;應(yīng)具有一定的抽象思維能力、邏輯推理能力、運算能力;能運用 基本概念、基本理論和基本方法正確地判斷和證明,準(zhǔn)確地計算;能綜合運用所學(xué)知識分析并解決簡單的實際問題。 本大綱對內(nèi)容的要求由低到高,對概念和理論分為“了解”和“理解”兩個層次;對方 法和運算分為“會”“掌握”和“熟練”三個層次。、
復(fù)習(xí)考試內(nèi)容
一、極限和連續(xù)
(1)極限
1.知識范圍數(shù)列極限的概念和性質(zhì)
(1)數(shù)列數(shù)列極限的定義性有界性四則運算法則夾逼定理,單調(diào)有界數(shù)列極限存在定理
(2)函數(shù)極限的概念和性質(zhì)函數(shù)在一點處極限的定義,左、右極限及其與極限的關(guān)系 χ趨于無窮(χ∞,χ+∞, χ-∞)時函數(shù)的極限函數(shù)極限的幾何意義 性 四則運算法則夾逼定理
(3)無窮小量與無窮大量無窮小量與無窮大量的定義無窮小量與無窮大量的關(guān)系,無窮小量的性質(zhì),無窮小量的比較。
(4)兩個重要極限
sin x lim x = 1 x 0
1 lim 1 + x = e x ∞x
2.要求
(1)了解極限的概念(對極限定義中“ε—N”“ε—δ”“ε—M”的描述不作要求)。掌握函數(shù)在一點處的左極限與右極限以及函數(shù)在一點處極限存在的充分必要條件。
(2)了解極限的有關(guān)性質(zhì),掌握極限的四則運算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系,會進(jìn)行無窮小量階的比較(高階、低階、同階和等價) 。會運用等價無窮小量代換求極限。
(4)熟練掌握用兩個重要極限求極限的方法。
(2)連續(xù)
1.知識范圍
(1)函數(shù)連續(xù)的概念函數(shù)在一點處連續(xù)的定義 左連續(xù)和右連續(xù) 函數(shù)在一點處連續(xù)的充分必要條件 函數(shù)的 間斷點
(2)函數(shù)在一點處連續(xù)的性質(zhì)連續(xù)函數(shù)的四則運算 復(fù)合函數(shù)的連續(xù)性
(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)有界性定理 值與最小值定理 介值定理(包括零點定理)
(4)初等函數(shù)的連續(xù)性
2.要求
(1) 理解函數(shù)在一點處連續(xù)與間斷的概念,理解函數(shù)在一點處連續(xù)與極限存在之間的關(guān)系, 掌握函數(shù)(含分段函數(shù))在一點處的連續(xù)性的判斷方法。
(2)會求函數(shù)的間斷點。
(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會用它們證明一些簡單命題。
(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會利用函數(shù)的連續(xù)性求極限。
二、一元函數(shù)微分學(xué)
(一)導(dǎo)數(shù)與微分
1.知識范圍
(1)導(dǎo)數(shù)概念導(dǎo)數(shù)的定義左導(dǎo)數(shù)與右導(dǎo)數(shù)函數(shù)在一點處可導(dǎo)的充分必要條件導(dǎo)數(shù)的幾何意義可導(dǎo)與連續(xù)的關(guān)系
(2)導(dǎo)數(shù)的四則運算法則與導(dǎo)數(shù)的基本公式
(3)求導(dǎo)方法復(fù)合函數(shù)的求導(dǎo)法 隱函數(shù)的求導(dǎo)法 對數(shù)求導(dǎo)法
(4)高階導(dǎo)數(shù)高階導(dǎo)數(shù)的定義 高階導(dǎo)數(shù)的計算
(5)微分微分的定義 微分與導(dǎo)數(shù)的關(guān)系 微分法則 一階微分形式不變性
2.要求
(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,會用定義求函數(shù)在一點處的導(dǎo)數(shù)。
(2)會求曲線上一點處的切線方程與法線方程。
(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運算法則以及復(fù)合函數(shù)的求導(dǎo)方法。
(4)掌握隱函數(shù)的求導(dǎo)法與對數(shù)求導(dǎo)法。會求分段函數(shù)的導(dǎo)數(shù)。
(5)了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)。
(6)理解微分的概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。
(二)導(dǎo)數(shù)的應(yīng)用
1.知識范圍
(1) 洛必達(dá)(L′Hospital)法則
(2) 函數(shù)增減性的判定法
(3) 函數(shù)極值與極值點值與最小值
(4) 曲線的凹凸性、拐點
(5) 曲線的水平漸近線與鉛直漸近線
2.要求
(1)熟練掌握用洛必達(dá)法則求“
0 ∞ ” “ ” “0∞” “∞—∞”型未定式的極限的方法。 0 ∞
(2)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的增減性證明簡單的不等式。
(3)理解函數(shù)極值的概念,掌握求函數(shù)的駐點、極值點、極值、值與最小值的方法,會求解簡單的應(yīng)用問題。
(4)會判定曲線凹凸性,會求曲線的拐點。
(5)會求曲線的水平漸近線與鉛直漸近線。
三、一元函數(shù)積分學(xué)
(一)不定積分
1.知識范圍
(1)不定積分原函數(shù)與不定積分的定義 不定積分的性質(zhì)
(2)基本積分公式
(3)換元積分法第一換元法(湊微分法) 第二換元法
(4)分部積分法
(5)一些簡單有理函數(shù)的積分
2.要求
(1)理解原函數(shù)與不定積分的概念及其關(guān)系,掌握不定積分的性質(zhì)。
(2)熟練掌握不定積分的基本公式。
(3)熟練掌握不定積分第一換元法,掌握第二換元法(僅限形如
2 2 2 2 。 ∫ a x dx、 a + x dx 的三角代換與簡單的根式代換) ∫
(4)熟練掌握不定積分的分部積分法
(5)掌握簡單有理函數(shù)不定積分的計算。
(二)定積分
1.知識范圍
(1)定積分的概念定積分的定義及其幾何意義可積條件
(2)定積分的性質(zhì)
(3)定積分的計算變上限的定積分牛頓—萊布尼茨(Newton—Leibniz)公式換元積分法分部積分法
(4)無窮區(qū)間的廣義積分、收斂、發(fā)散、計算方法
(5)定積分的應(yīng)用平面圖形的面積、旋轉(zhuǎn)體的體積
2.要求
(1) 理解定積分的概念與幾何意義,了解可積的條件。
(2) 掌握定積分的基本性質(zhì)
(3) 理解變上限的定積分是上限的函數(shù),掌握對變上限定積分求導(dǎo)數(shù)的方法。
(4) 熟練掌握牛頓—萊布尼茨公式
(5) 掌握定積分的換元積分法與分部積分法。
(6) 理解無窮區(qū)間廣義積分的概念,掌握其計算方法。
(7) 掌握直角坐標(biāo)系下用定積分計算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成旋轉(zhuǎn)體的體積。
四、多元函數(shù)微分學(xué)
1.知識范圍
(1)多元函數(shù)多元函數(shù)的定義 二元函數(shù)的定義域 二元函數(shù)的幾何意義
(2)二元函數(shù)的極限與連續(xù)的概念
(3)偏導(dǎo)數(shù)與全微分一階偏導(dǎo)數(shù) 二階偏導(dǎo)數(shù) 全微分
(4)復(fù)合函數(shù)的偏導(dǎo)數(shù)隱函數(shù)的偏導(dǎo)數(shù)
(5)二元函數(shù)的無條件極值和條件極值
2.要求
(1)了解多元函數(shù)的概念,會求二元函數(shù)的定義域。了解二元函數(shù)的幾何意義。
(2)了解二元函數(shù)的極限與連續(xù)的概念。
(3)理解二元函數(shù)一階偏導(dǎo)數(shù)和全微分的概念,掌握二元函數(shù)的一階偏導(dǎo)數(shù)的求法。掌握二元函數(shù)的二階偏導(dǎo)數(shù)的求法,掌握二元函數(shù)全微分的求法。
(4)掌握復(fù)合函數(shù)與隱函數(shù)的一階偏導(dǎo)數(shù)的求法。
(5)會求二元函數(shù)的無條件極值和條件極值。
(6)會用二元函數(shù)的無條件極值及條件極值求解簡單的實際問題。
五、概率論初步
1.知識范圍
(1)事件及其概率隨機(jī)事件 事件的關(guān)系及其運算 概率的古典型定義 概率的性質(zhì) 條件概率事件的獨立性
(2)隨機(jī)變量及其概率分布隨機(jī)變量的概念 隨機(jī)變量的分布函數(shù) 離散型隨機(jī)變量及其概率分布 (3)隨機(jī)變量的數(shù)字特征 離散型隨機(jī)變量的數(shù)學(xué)期望方差 標(biāo)準(zhǔn)差
2.要求
(1) 了解隨機(jī)現(xiàn)象、隨機(jī)試驗的基本特點;理解基本事件、樣本空間、隨機(jī)事件的概念。
(2) 掌握事件之間的關(guān)系:包含關(guān)系、相等關(guān)系、互不相容(或互斥)關(guān)系及對立關(guān)系。
(3) 理解事件之間并(和) 、交(積) 、差運算的定義,掌握其運算規(guī)律。
(4) 理解概率的古典型定義;掌握事件概率的基本性質(zhì)及事件概率的計算。
(5) 會求事件的條件概念;掌握概率的乘法公式及事件的獨立性。
(6) 了解隨機(jī)變量的概念及其分布函數(shù)。
(7) 理解離散型隨機(jī)變量的定義及其概率分布,掌握概率分布的計算方法。
(8) 會求離散型隨機(jī)變量的數(shù)學(xué)期望、方差和標(biāo)準(zhǔn)差。
篇2
1 多元復(fù)合函數(shù)的二階導(dǎo)數(shù)
多元復(fù)合函數(shù)的類型多種多樣,這里僅以一種類型加以說明。
設(shè)z=f(u,v),u=φ(x,y),v=ψ(x,y),如果函數(shù)u=φ(x,y),v=ψ(x,y)都在點(x,y)具有對x及對y的偏導(dǎo)數(shù),函數(shù)z=f(u,v)在對應(yīng)點(u,v)具有連續(xù)偏導(dǎo)數(shù),求,或的二階偏導(dǎo)數(shù)。多元復(fù)合函數(shù)的二階偏導(dǎo)數(shù)的計算是在一階偏導(dǎo)數(shù)的基礎(chǔ)上再求一次偏導(dǎo)數(shù)。必須注意的是,在第二次求導(dǎo)數(shù)的過程中,具有與變量z相同的函數(shù)結(jié)構(gòu),、得看成是以u、v為中間變量,x、y為自變量的復(fù)合函數(shù)。
例1、設(shè)w=f(x+y+z,xyz),f具有二階連續(xù)偏導(dǎo)數(shù),求。
2 由參數(shù)方程確定的函數(shù)的二階導(dǎo)數(shù)
設(shè)參數(shù)方程的一般形式為x=φ(t)y=ψ(t)α≤t≤β,其確定的一元函數(shù)為y=f(x)。由復(fù)合函數(shù)以及反函數(shù)的求導(dǎo)法則,有
如果x=φ(t)、y=ψ(t)還是二階可導(dǎo)的,那么從(1)式又可得到函數(shù)的二階導(dǎo)數(shù)。此時,(1)式兩端同時對變量x求導(dǎo)。右端變量t看成是變量x的函數(shù),t的表達(dá)式看成是以t為中間變量,x為自變量的復(fù)合函數(shù)。根據(jù)復(fù)合函數(shù)的求導(dǎo)法則以及反函數(shù)的求導(dǎo)法則,即可得到參數(shù)方程的二階導(dǎo)數(shù)。
篇3
【關(guān)鍵詞】一元二次不等式 二次函數(shù) 方程 數(shù)形結(jié)合 圖象
【中圖分類號】G632 【文獻(xiàn)標(biāo)識碼】A 【文章編號】1006-9682(2010)07-0140-02
一元二次不等式的解法是高中數(shù)學(xué)教學(xué)的重點之一。從內(nèi)容上看,二次不等式、二次方程與二次函數(shù)密不可分,該內(nèi)容涉及的知識點較多且應(yīng)用廣泛。從思想層次上看,它涉及到數(shù)形結(jié)合、分類轉(zhuǎn)化、方程函數(shù)等數(shù)學(xué)思想,這些內(nèi)容和思想將在中學(xué)數(shù)學(xué)中產(chǎn)生廣泛而深遠(yuǎn)的影響。我們現(xiàn)用的教材在處理上是下了一番功夫的,它將二次不等式的解法分成了兩部分――首先介紹了一元二次不等式的概念和用因式分解法解一元二次不等式,即利用“同號兩數(shù)相乘得正,異號兩數(shù)相乘得負(fù)”的原理,將一元二次不等式轉(zhuǎn)化為一元一次不等式組加以解決。毫無疑問,這種解法具有極大的局限性和不完整性,這就為后面介紹二次不等式的圖象法(也就是結(jié)合了與二次函數(shù)之間的關(guān)系)作了必要的鋪墊和準(zhǔn)備。一元二次不等式的解法是以后研究函數(shù)的定義域、值域等問題的主要工具,它可滲透到中學(xué)數(shù)學(xué)的幾乎所有領(lǐng)域中,對今后的學(xué)習(xí)起著十分重要的作用。筆者將從以下兩個方面去探討教學(xué)中一元二次不等式的解法及與二次函數(shù)的關(guān)系。
一、明確教學(xué)目標(biāo)及教學(xué)重難點
教學(xué)分為三大目標(biāo)。①知識目標(biāo):使學(xué)生掌握一元二次不等式的圖象法,理解掌握這種解法的理論依據(jù),并在教學(xué)中滲透高考對本內(nèi)容的考察程度;②能力目標(biāo):通過圖象解法滲透數(shù)形結(jié)合、分類化歸等數(shù)學(xué)思想,培養(yǎng)學(xué)生動手能力、觀察分析能力、抽象概括能力、歸納總結(jié)等系統(tǒng)的邏輯思維能力,培養(yǎng)學(xué)生簡約直觀的思維方法和良好的思維品質(zhì);③德育目標(biāo):通過圖象法,有意識地向?qū)W生滲透抽象與具體、聯(lián)系與轉(zhuǎn)化、特殊與一般觀點和方法,培養(yǎng)學(xué)生良好的心理素質(zhì)和競爭意識。沒有目標(biāo)就像無帆的船,所以在教學(xué)中始終要堅持以貫穿這樣的目標(biāo)為中心,讓學(xué)生做到心中有數(shù),清楚學(xué)習(xí)一元二次不等式的重要性,從而進(jìn)一步提高學(xué)生學(xué)習(xí)的積極性與主動性,從而教學(xué)才會卓有成效。
教學(xué)重點與難點:教學(xué)重點是三種類型的一元二次不等式圖象解法。教學(xué)難點是二次不等式、二次方程和二次函數(shù)三者關(guān)系的有機(jī)聯(lián)系,數(shù)形結(jié)合和分類轉(zhuǎn)化等數(shù)學(xué)思想的理解和運用。學(xué)生在學(xué)習(xí)中必須明確清楚這兩者之間的關(guān)系,不然會把握不住學(xué)習(xí)的方向性,針對重要環(huán)節(jié)以及薄弱環(huán)節(jié)可以相應(yīng)的采取不同的學(xué)習(xí)方式,達(dá)到有的放矢,需要掌握的知識點(即重點,有時難點也是重點)要非常熟悉,需要理解的知識點了解它所要體現(xiàn)的內(nèi)容即可。
二、掌握一元二次不等式與二次函數(shù)的密切聯(lián)系
首先,要掌握二次函數(shù)和一元二次方程之間的聯(lián)系,二次函數(shù)的圖象是一條拋物線,其開口方向由二次項系數(shù)決定,可得此重要結(jié)論:二次函數(shù)與x軸的交點坐標(biāo)的橫坐標(biāo)就是其對應(yīng)的一元二次方程的根――有兩個不相等的實數(shù)根則有兩個不同的交點,有兩個相等的實數(shù)根則有一個交點,沒有實數(shù)根則沒有交點。從而可觀察到二次函數(shù)和不等式的關(guān)系就是不等式的解集和方程的根之間的關(guān)系:“小于取中間,大于取兩邊”,從而歸納出圖表(一元二次不等式與一元二次方程及二次函數(shù)的關(guān)系):
從上表中我們就可求解一元二次不等式,如高一教材中第22頁的例題:求解不等式(x+4)(x-1)
與 ,從而求出不等式的解集。
我認(rèn)為還可以采取更為簡潔的方法求解此類不等式,如上例中的4比-1大,從而可判斷出x+4比x-1大,因此可得到x+4>0,x-1
(x+a)(x+b)>0, 或(x+a)(x+b)
的解法,只需去判斷a與b的大小,就可知x+a與x+b的大小,也就進(jìn)一步求出不等式的解集。這種方法顯然比上述方法顯得更為簡單,并且避免了討論。
其次,要滲透一元二次不等式與二次函數(shù)間的密切聯(lián)系,這建立在對一元二次不等式和二次函數(shù)的知識點掌握牢固的基礎(chǔ)上。如二次函數(shù)的定義域、值域、單調(diào)性、最值和圖象等性質(zhì),學(xué)生都需要理解透徹,不等式與二次函數(shù)結(jié)合的知識,在一定程度上可以很準(zhǔn)確的反映學(xué)生的數(shù)學(xué)思維。
例如,設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)
-x=0的兩個根x1,x2滿足0
(1)當(dāng)x∈(0,x1)時,證明x
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明x0< 。
解題思路:本題要證明的是x
由題中所提供的信息可以聯(lián)想到:①f(x)=x,說明拋物線與直
線y=x在第一象限內(nèi)有兩個不同的交點;②方程f(x)-x=0可變?yōu)閍x2+(b-1)x+1=0,它的兩根為x1、x2,可得到x1、x2與a、b、c之間的關(guān)系式,因此解題思路明顯有三個:①圖象法;②利用一元二次方程根與系數(shù)的關(guān)系;③利用一元二次方程的求根公式,輔之以不等式的推導(dǎo)?,F(xiàn)以思路②為例,解決這道題:
(1)先證明x
由00,從而證得x
根據(jù)韋達(dá)定理,有x1x2= ,0
=f(x1),又c=f(0),f(0)
根據(jù)二次函數(shù)的性質(zhì),曲線y=f(x)是開口向上的拋物線,因此,函數(shù)y=f(x)在閉區(qū)間[0,x1]上的最大值在邊界點x=0或x=x1處達(dá)到,而且不可能在區(qū)間的內(nèi)部達(dá)到,由于f(x1)
(2)
函數(shù)f(x)圖象的對稱軸為直線x=- ,且是唯一的一
條對稱軸,因此,依題意,得x0=- ,因為x1、x2是二次方
程ax2+(b-1)x+c=0的兩根,根據(jù)韋達(dá)定理得x1+x2=- ,
x2-
我們還可以對上述例題進(jìn)行相應(yīng)的變形可得:已知二次函數(shù)f(x)=ax2+bx+1(a,b∈R,a>0),設(shè)方程f(x)=x的兩個實根分別為x1、x2。
(1)若x1
x0>-1;
(2)若|x1|
對于這個例題,我們采取的常規(guī)思路如下:
(1)證明:f(x)=x,ax2+(b-1)x+1=0。
設(shè)g(x)=ax2+(b-1)x+1,由題意可得:
,即
x0=- >-1
(2)對于方程ax2+(b-1)x+1=0,令b-1=c,則有ax2+cx+1=0。
由|x2-x1|=2,得 ,即c2-4a=4a2,c2=4a2
+4a(1)
又|x1|
即-6
而=c2-4a>0,4a
由(1)(2)得a>
c2=4a2+4a> c> 或c
又b=c+1,b> 或b
上述例題中的第(2)小題我們還可采取例外的思路進(jìn)行求解,而且這種思路顯得更為快捷和簡便,解法如下:
由|x2-x1|=2,得|x2|-|x1|≤|x2-x1|=2,又|x1|
對于方程ax2+(b-1)x+1=0,由韋達(dá)定理我們有 =x1
x2≤|x1||x2| 而|x2-x1|= =2,(b-1)2
=4a2+4a,又a> ,b> 或b< 。
上述思路就是有效的結(jié)合了不等式與函數(shù)、方程的思想,這樣就可大大簡化運算的過程,而且思路清晰,學(xué)生較容易接受,因此我們在教學(xué)過程中對于這一類問題就要擴(kuò)展學(xué)生的思維,不讓其只陷入一個思路當(dāng)中,這樣就無形中使學(xué)生得到了思維的鍛煉,又增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
綜上所述,二次不等式與二次函數(shù)之間有著豐富的內(nèi)涵和外延,以它為代表來研究函數(shù)的性質(zhì),可以建立起函數(shù)、方程、不等式之間的聯(lián)系,可以編擬出層出不窮、靈活多變的數(shù)學(xué)問題,考查學(xué)生的數(shù)學(xué)基礎(chǔ)知識和綜合數(shù)學(xué)素質(zhì),特別是能從解答的深入程度中,更好的區(qū)分出學(xué)生運用數(shù)學(xué)知識和思想方法解決數(shù)學(xué)問題的能力。
參考文獻(xiàn)
1人民教育出版社中學(xué)數(shù)學(xué)室編.全日制普通高級中學(xué)教科書(必修)數(shù)學(xué)第一冊(上).北京:人民教育出版社,2007:21~23
2 任志鴻.高中新教材優(yōu)秀教案高一數(shù)學(xué)(上).海口:南方出版社,2006:78~83
篇4
數(shù)學(xué)二考察高等數(shù)學(xué)和線性代數(shù)兩部分,分別占總分的百分之78和百分之22。
根據(jù)考研大綱,數(shù)二考察144個考點,不考察:向量代數(shù)與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數(shù)。根據(jù)每年的考研真題,數(shù)學(xué)二只覆蓋考試大綱的百分之82、5,所以復(fù)習(xí)時要懂得抓重點,數(shù)學(xué)二重點考察的內(nèi)容是:曲率、弧長以及質(zhì)心問題。在復(fù)習(xí)時要重點關(guān)注。
(來源:文章屋網(wǎng) )
篇5
一、專升本考試科目
專升本考試科目:政治、英語、專業(yè)基礎(chǔ)。
其中專業(yè)基礎(chǔ)包括:大學(xué)語文、藝術(shù)概論、高等數(shù)學(xué)一、高等數(shù)學(xué)二、民法、教育理論、生態(tài)學(xué)基礎(chǔ)、醫(yī)學(xué)綜合??忌鶕?jù)報考類別只考一門。
二、高中起點升本科考試科目
高起本考生分文理科報考,考試科目分別是:
文科:語文、數(shù)學(xué)(文)、外語、史地
理科:語文、數(shù)學(xué)(理)、外語、理化。
三、高中起點升??瓶荚嚳颇?/p>
高起專考生分文理科報考,考試科目分別是:
文科:語文、數(shù)學(xué)(文)、外語。
理科:語文、數(shù)學(xué)(理)、外語。
四、其它
篇6
一、專升本考試科目
專升本考試科目:政治、英語、專業(yè)基礎(chǔ)。
其中專業(yè)基礎(chǔ)包括:大學(xué)語文、藝術(shù)概論、高等數(shù)學(xué)一、高等數(shù)學(xué)二、民法、教育理論、生態(tài)學(xué)基礎(chǔ)、醫(yī)學(xué)綜合。考生根據(jù)報考類別只考一門。
二、高中起點升本科考試科目
高起本考生分文理科報考,考試科目分別是:
文科:語文、數(shù)學(xué)(文)、外語、史地
理科:語文、數(shù)學(xué)(理)、外語、理化。
三、高中起點升??瓶荚嚳颇?/p>
高起專考生分文理科報考,考試科目分別是:
文科:語文、數(shù)學(xué)(文)、外語。
理科:語文、數(shù)學(xué)(理)、外語。
四、其它
篇7
數(shù)學(xué)一、二、三科目考試區(qū)別:
1、線性代數(shù):數(shù)學(xué)一、二、三均考察線性代數(shù)這門學(xué)科,而且所占比例均為22%,從歷年的考試大綱來看,數(shù)一、二、三對線性代數(shù)部分的考察區(qū)別不是很大,不同的是數(shù)一的大綱中多了向量空間部分的知識。
2、概率論與數(shù)理統(tǒng)計:數(shù)學(xué)二不考察,數(shù)學(xué)一與數(shù)學(xué)三均占22%,數(shù)一比數(shù)三多了區(qū)間估計與假設(shè)檢驗部分的知識。
3、高等數(shù)學(xué):數(shù)學(xué)一、二、三均考察,而且所占比重最大,數(shù)一、三的試卷中所占比例為56%,數(shù)二所占比例78%。
(來源:文章屋網(wǎng) )
篇8
摘要:隨著經(jīng)濟(jì)的發(fā)展和人們生活水平的提高,社會對人才的需求也不斷發(fā)生著變化。數(shù)學(xué)作為一門重要的就學(xué)科,在一定程度上表現(xiàn)了學(xué)生的邏輯思維能力,在高考中也是十分重要的。但是通過觀察我們可以發(fā)現(xiàn),高中數(shù)學(xué)與高等數(shù)學(xué)之間存在一個比較大的跨度。本文將主要對高等數(shù)學(xué)與高中數(shù)學(xué)銜接存在的問題進(jìn)行分析并給出一些建議。
關(guān)鍵詞:高等數(shù)學(xué);高中數(shù)學(xué);內(nèi)容銜接;研究分析
在高中時代,數(shù)學(xué)是非常重要的重點課程,而在大學(xué)時代,高等數(shù)學(xué)就成為了高等院校尤其是工科院校的基礎(chǔ)課程。大學(xué)有突出的專業(yè),強(qiáng)調(diào)專業(yè)特色,但是數(shù)學(xué)會成為后續(xù)專業(yè)課程的基礎(chǔ),可以為專業(yè)的學(xué)習(xí)提供數(shù)學(xué)知識和解決問題的基本方法。所以,高等數(shù)學(xué)對學(xué)生的學(xué)習(xí)與發(fā)展是很重要的。
一、高等數(shù)學(xué)教育現(xiàn)狀
高中數(shù)學(xué)主要介紹關(guān)于常量的內(nèi)容,是初等數(shù)學(xué)的范疇。而大學(xué)的高等數(shù)學(xué)主要是關(guān)于變量的。他們在研究對象、研究方法甚至思維方式和邏輯的嚴(yán)密性上都存在很大差異。隨著高中數(shù)學(xué)和高等數(shù)學(xué)都在不斷的進(jìn)行教學(xué)改革,它們之間內(nèi)容重復(fù)的部分和知識延伸的重點也在不斷地發(fā)生變化。這些變化導(dǎo)致有些學(xué)生高中數(shù)學(xué)成績優(yōu)秀到了大學(xué)卻不得要領(lǐng)不斷下降甚至學(xué)習(xí)有障礙,反而有些學(xué)生高中數(shù)學(xué)成績普通卻能輕松自如地學(xué)習(xí)高等數(shù)學(xué)。雖然高等數(shù)學(xué)與高中數(shù)學(xué)二者之間有著密切的聯(lián)系,但是仍然存在比較大的跨度,是兩個相對獨立的學(xué)習(xí)與教學(xué)階段。但在實際教學(xué)過程中,高中教師一般會注重現(xiàn)有理論的教學(xué),沒有延伸和拓展,大學(xué)教師又常常會忽略二者之間的聯(lián)系,造成高中數(shù)學(xué)教學(xué)和高等數(shù)學(xué)教學(xué)存在比較嚴(yán)重的脫節(jié)現(xiàn)象。讓學(xué)生產(chǎn)生了畏難情緒。尤其是在高中艱苦學(xué)習(xí)的階段過渡到相對輕松和自由的大學(xué)階段,學(xué)生更容易喪失學(xué)習(xí)的興趣和動力。
二、高等數(shù)學(xué)與高中數(shù)學(xué)內(nèi)容銜接存在的問題
1、高等數(shù)學(xué)與高中數(shù)學(xué)存在脫節(jié)的問題
普遍存在的情況是,高中數(shù)學(xué)教學(xué)主要是為沖刺高考而服務(wù)的,一切以迎戰(zhàn)高考為中心。所以在教學(xué)過程中,教師大多會按照高考考綱進(jìn)行教學(xué),這樣就忽略了一些高考沒有涉及到的知識點的教學(xué),而這些知識點很有可能恰好是大學(xué)數(shù)學(xué)教學(xué)中涉及到的問題。如此一來,從高中過渡到大學(xué),在數(shù)學(xué)的學(xué)習(xí)中就會存在脫節(jié)問題。例如,在階常系數(shù)線性齊次微分方程y″+py′+qy=0時,學(xué)生要先求出其特征方程r2+pr+q=0的根,然后根據(jù)特征方程根的情況,寫出方程的通解。在實際教學(xué)過程中,學(xué)生對由特征方程所得的一元二次方程r2+pr+q=0解答的認(rèn)識主要停留在Δ=p2-4q≥0實數(shù)解上,這給微分方程的學(xué)習(xí)帶來一定困難。
2、高中數(shù)學(xué)存在邏輯嚴(yán)密性問題
無論是在高等數(shù)學(xué)還是初等數(shù)學(xué)中,嚴(yán)密性都是至關(guān)重要的。必要的邏輯推理訓(xùn)練是不可少的,因為它是創(chuàng)造性數(shù)學(xué)思維中不可少的工具。這也是數(shù)學(xué)教學(xué)過程中逐步形成的一個特點。但是與高等數(shù)學(xué)比較而言,高中數(shù)學(xué)教學(xué)存在邏輯的嚴(yán)密性問題。如在高中教材中沒有單獨給出極限的定義,只有描述性表述,但在介紹導(dǎo)數(shù)的概念時又利用了極限的概念。
3、時間間隔造成的知識點遺忘
在大學(xué)數(shù)學(xué)的教學(xué)過程中,很多的知識點是與高中數(shù)學(xué)的知識點串聯(lián)在一起的。比如集合、實數(shù)、自然數(shù)、整數(shù)、有理數(shù)、無理數(shù)、函數(shù)、極限、導(dǎo)數(shù)、概率等。在高中階段,這些知識點會頻繁的用到并會不斷的重申,學(xué)生記憶深刻。但忙碌的高考過后,學(xué)生的身心得到放松,時間的間隔導(dǎo)致他們忘記了原來的知識點,而大學(xué)教師清楚的知道他們學(xué)習(xí)過這些基本的知識點,所以會一次性的復(fù)習(xí)或者根本就不復(fù)習(xí)而直接開始新的課程。學(xué)生一時間難以接受,學(xué)習(xí)就會怠慢,久而久之,嚴(yán)重影響學(xué)習(xí)的效果和效率。
三、如何避免高等數(shù)學(xué)與高中數(shù)學(xué)教學(xué)內(nèi)容銜接問題
1、避免高等數(shù)學(xué)與高中數(shù)學(xué)知識點脫節(jié)的問題
例如上面講到的剛進(jìn)入大學(xué)的學(xué)生對一元二次方程的主要認(rèn)識。那么學(xué)生在學(xué)習(xí)在微分方程內(nèi)容時,應(yīng)先補習(xí)求一元二次方程r2+pr+q=0在復(fù)數(shù)范圍內(nèi)的解和重根的概念。要解決“脫節(jié)”的問題,大學(xué)教師應(yīng)該主動去了解高中教材,了解高中數(shù)學(xué)教學(xué)的內(nèi)容、范圍及教學(xué)的側(cè)重面,然后針對性的進(jìn)行教學(xué)。知道那些知識點是要補充的。例如:反三角函數(shù)、正余割函數(shù)、函數(shù)有界性及周期性的數(shù)學(xué)描述、曲線的參數(shù)方程、極坐標(biāo)系、復(fù)數(shù)的概念。
2、解決邏輯嚴(yán)密性問題
高中數(shù)學(xué)注重理論本身的教學(xué),忽略了延伸和拓展,大學(xué)教師需要把這些知識點重新詳細(xì)系統(tǒng)地講述一遍,給予嚴(yán)格的定義并澄清概念,加強(qiáng)學(xué)生嚴(yán)格的數(shù)學(xué)語言描述訓(xùn)練。但抽象的數(shù)學(xué)語言描述常常讓大一新生望而卻步,因此從高中階段的直觀描述到大學(xué)階段嚴(yán)格的數(shù)學(xué)語言描述這個過程必須循序漸進(jìn),要結(jié)合直觀描述讓學(xué)生理解嚴(yán)格的數(shù)學(xué)語言描述。例如高中數(shù)學(xué)是這樣介紹對數(shù)理論的:“一般地,如果ax=N(a>0,且a≠1),那么數(shù)x 叫作以a 為底N 的對數(shù),記作x=logaN”,利用指數(shù)函數(shù)的逆運算產(chǎn)生了對數(shù)函數(shù),并且用對數(shù)的定義給出了對數(shù)的運算性質(zhì):loga(MN)=logaM+logaN。事實上,在數(shù)學(xué)發(fā)展史上對數(shù)是出現(xiàn)在指數(shù)之前的。在大學(xué)數(shù)學(xué)教學(xué)中,可以利用積分的知識重新審視對數(shù)理論。由雙曲線y=1/x下面的面積得出了自然對數(shù)函數(shù)的定義 這種新函數(shù)的引入是極其自然的,符合數(shù)學(xué)的歷史發(fā)展。這樣講既避免了與中學(xué)數(shù)學(xué)知識的簡單重復(fù),又對高中數(shù)學(xué)教學(xué)的補充和拓展。
3、知識點的復(fù)習(xí)和鞏固
對于一些高中數(shù)學(xué)和大學(xué)數(shù)學(xué)重復(fù)的內(nèi)容,在進(jìn)入大學(xué)后,教師應(yīng)該進(jìn)行一個知識點的梳理,幫助學(xué)生盡快的復(fù)習(xí)之前的知識,這樣可以幫學(xué)生盡快的進(jìn)入狀態(tài),為后面的學(xué)習(xí)打好基礎(chǔ)。
總而言之,數(shù)學(xué)是一門重要的學(xué)科,是眾多學(xué)科和專業(yè)的基礎(chǔ)。無論是在高中階段還是在大學(xué)階段,數(shù)學(xué)的學(xué)習(xí)都是十分重要的。但是高中數(shù)學(xué)與高等數(shù)學(xué)之間存在一個比較大的跨度,這個就導(dǎo)致了高等數(shù)學(xué)的學(xué)習(xí)和教學(xué)都存在一定的難度。教師應(yīng)該注重知識點的重溫和銜接,彌補疏漏。這樣才能提高高等數(shù)學(xué)學(xué)習(xí)的效率。
參考文獻(xiàn):
[1]季素月,錢林;大學(xué)與中學(xué)數(shù)學(xué)學(xué)習(xí)銜接問題的研究[J];數(shù)學(xué)教育學(xué)報;2000年04期
[2]高雪芬;王月芬;張建明;;關(guān)于大學(xué)數(shù)學(xué)與高中銜接問題的研究[J];浙江教育學(xué)院學(xué)報;2010年03期
篇9
關(guān)鍵詞:微分中值定理;證題技巧
中圖分類號:G642.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1674-9324(2014)38-0126-02
微分中值定理是高等數(shù)學(xué)的重要內(nèi)容,也是考研必考內(nèi)容,因此,掌握其證題技巧,十分必要。下面就三種情形對其證題技巧進(jìn)行探討.
一、命題f(n)(ξ)=0的證法
證題方法:方法1:驗證f(x)在包含x=ξ的區(qū)間上滿足羅爾定理條件;
方法2:驗證ξ為f(x)的最值或極值點,利用極值存在的必要條件或費馬定理即可得證;
方法3:利用泰勒公式證明。
例1設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)二階可導(dǎo),且f(a)=f(c)=f(b),(a
證明:顯然f(x)在[a,c][c,d]上滿足羅爾定理條件,于是分別?ξ1∈(a,c),ξ2∈(c,b)使f'(ξ1)=0,f(ξ2)=0,再對f'(x)在[ξ1,ξ2]上用羅爾定理,故?ξ∈(ξ1,ξ2)?(a,b),使f"(ξ)=0
例2設(shè)函數(shù)f(x)在[a,b]上可導(dǎo),且有f'+(a).f'-(b)
證明:由題設(shè)可知有f'+(a)與f'-(b)異號,不妨設(shè)有
f'+(a)0,當(dāng)x∈(a,a+δ1)時,有
同理,由極限的保號性可知?δ2>0,當(dāng)x∈(b-δ2,b)時,有>0,從而f(x)
例3若f(x)在[a,b]上有n階導(dǎo)數(shù),且f(a)=f'(b)=f'(b)=f"(b)=…=f(b)=0,則在(a,b)內(nèi)至少存在一個ξ,使f(ξ)=0
證明:將f(x)在x=b處按泰勒公式展開
f(x)=f(b)+f'(b)(x-b)+f"(b)(x-b)2+…+f(b)(x-b)+f(η)(x-b)
(x
例4若f(x)在[0,1]上有三階導(dǎo)數(shù),且f(0)=f(1)=0,設(shè)F(x)=x3.f(x),試證在(0,1)內(nèi)至少存在一個ξ,使F'''(ξ)=0
證明一:由題設(shè)可知F(x),F(xiàn)'(x),F(xiàn)"(x),F(xiàn)'''(x)在[0,1]上存在,又F(0)=F(1),由羅爾定理,?ξ1∈(0,1)使F'(ξ1)=0,又F'(0)=[3x2.f(x)+x3.f(x)]|x=0=0,可知F'(x)在[0,ξ1]上滿足羅爾定理,于是?ξ2∈(0,ξ1),使得,F(xiàn)''(ξ2)=0。又對F''(x)在[0,ξ2]上再次利用羅爾定理,故有ξ∈(0,ξ2)?(0,ξ1)?(0,1),使得F'''(ξ)=0
證明二:寫出F(x)在x=0處的二階泰勒展開式為
F(x)=F(0)+F'(0)x+F''(0)x2+F'''(ξ)x3,(ξ在0與x之間) (*)
因為F'(x)=3x2f(x)+x3f'(x),F(xiàn)"(x)=6xf(x)+6x2f'(x)+x3f"(x),所以F(0)=F'(0)=F"(0)=0,由(*)式得F(x)=F?(ξ)x3,注意到F(1)=f(1)=0,代入得F'''(ξ)=0,故F'''(ξ)=0
二、證明至少存在一點ξ∈(a,b),使f(ξ)=k(k≠0)或a,b,f(a),f(b),ξ,f(ξ),f'(ξ),…f(ξ)所構(gòu)成式子成立
證題方法:
作輔助函數(shù)F(x),驗證F(x)滿足羅爾定理條件。
輔助函數(shù)F(x)的構(gòu)造是證題的關(guān)鍵,以下介紹輔助函數(shù)的構(gòu)造方法。
微分方程法:(1)將欲證結(jié)論中的ξ換成x;(2)將式子寫成容易去掉一次導(dǎo)數(shù)符號的形式;(3)去掉一次導(dǎo)數(shù)符號,移項使等式一端為0,另一端即為所求的輔助函數(shù)F(x)。
作輔助函數(shù)的方法十分重要,拉格朗日定理的證明在2009年考研數(shù)學(xué)一和數(shù)學(xué)二中出現(xiàn)。拉格朗日中值定理的結(jié)論:=f'(ξ)
令ξ=x得=f'(x)積分x=f(x)+c
令c=0并舉移項f(x)-x=0令F(x)=f(x)-x即可。
柯西中值定理的結(jié)論:=
令ξ=x得=變形g'(x)=f'(x)
積分g(x)=f(x)+c令c=0并移項,
f(x)-g(x)=0令F(x)=f(x)-g(x)即可。
例5設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1)=0,f()=1,試證至少存在一個ξ∈(0,1),f'(ξ)=1
分析:f'(ξ)=1?f'(x)=1?f(x)=x?f(x)-x=0?F(x)=f(x)-x
證明:令F(x)=f(x)-x,顯然,F(xiàn)(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),又F(1)=f(1)-1=-1
f()-=>0,(f()=1),由零點定理可知,存在一個η∈(,1),使F(η)=0;又F(0)=f(0)-0=0,對F(x)在[0,η]上用羅爾定理,存在一個ξ∈(0,η)(0,1)使得F'(ξ)=0即f'(ξ)=1
例6設(shè)函數(shù)f(x)在[0,]上二階可導(dǎo),且f(0)=f'(0),f()=0,試證:至少存在一點ξ∈(0,),使得f''(ξ)=
分析:f"(ξ)=?f"(ξ)(1-2ξ)-2f'(ξ)=f'(ξ)?f"(x)(1-2x)-2f'(x)=f'(x)?[f'(x)(1-2x)]'=f'(x)?f'(x)(1-2x)=
f(x)+c?f'(x)(1-2x)-f(x)=0?F(x)=f'(x)(1-2x)-f(x)
證明:令F(x)=f'(x)(1-2x)-f(x),顯然在[0,]上連續(xù),在(0,)內(nèi)可導(dǎo),
且F(0)=f'(0)(1-0)-f(0)=0,F(xiàn)()=f'()(1-2.)-f()=0,所以F(x)在[0,]上滿足羅爾定理條件,則至少存在一點ξ∈(0,),使得F'(ξ)=0即f"(ξ)(1-2ξ)-3f'(ξ)=0,亦即f"(ξ)=
三、證明在(a,b)內(nèi)至少存在ξ,η,ξ≠η滿足某種個代數(shù)式成立
證題方法:用兩次拉氏中值定理,或者使用兩次柯西中值定理,或者使用一次拉氏中值定理、一次柯西中值定理。
例7設(shè)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),0
證明:因為0
即=f'(η),又因為f(x)在[a,b]上滿足拉格日中值定理,所以?ξ∈(a,b)使得=f'(ξ),由上面二式可得f'(ξ)=f'(η),ξ,η(a,b)
例8設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=0,f(1)=1,試證:對任意給定的正數(shù)a,b,在(0,1)內(nèi)存在不同的ξ,η,使+=a+b.
證明:因為a與b均為正數(shù),所以0
熱門標(biāo)簽
高等數(shù)學(xué)論文 高等教育論文 高等教育 高等醫(yī)學(xué)教育 高等教育法律概論 高等教育研究 高等數(shù)學(xué)教學(xué) 高等教育導(dǎo)論 高等教育知識 高等教育論文 鄉(xiāng)村垃圾 鄉(xiāng)村糾紛 鄉(xiāng)村旅游業(yè) 鄉(xiāng)村社會