數(shù)學(xué)教學(xué)與學(xué)生創(chuàng)造思維能力的培養(yǎng)
時間:2022-03-30 02:12:00
導(dǎo)語:數(shù)學(xué)教學(xué)與學(xué)生創(chuàng)造思維能力的培養(yǎng)一文來源于網(wǎng)友上傳,不代表本站觀點,若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
數(shù)學(xué)教學(xué)與學(xué)生創(chuàng)造思維能力的培養(yǎng)
內(nèi)容摘要:現(xiàn)代高科技和人才的激烈競爭,歸根結(jié)底就是創(chuàng)造性思維的競爭,而創(chuàng)造性思維的實質(zhì)就是求新、求異、求變。在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造思維、激發(fā)創(chuàng)造力是時代對我們提出的基本要求。怎樣培養(yǎng)學(xué)生的創(chuàng)造思維能力:
1、指導(dǎo)觀察2、引導(dǎo)想象3、鼓勵求異4、誘發(fā)靈感
關(guān)鍵詞:創(chuàng)造思維
前言:在競爭日益激烈的當(dāng)今社會,如何讓在學(xué)校里學(xué)習(xí)的學(xué)生提前適應(yīng)社會的發(fā)展,使他們能夠順利地成長,是學(xué)校、家庭和社會所面臨的一個重要問題,本文就在數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的創(chuàng)造思維能力提出自己的一些看法現(xiàn)代高科技和人才的激烈競爭,歸根結(jié)底就是創(chuàng)造性思維的競爭,而創(chuàng)造性思維的實質(zhì)就是求新、求異、求變。創(chuàng)新是教與學(xué)的靈魂,是實施素質(zhì)教育的核心;數(shù)學(xué)教學(xué)蘊含著豐富的創(chuàng)新教育素材,數(shù)學(xué)教師要根據(jù)數(shù)學(xué)的規(guī)律和特點,認真研究,積極探索培養(yǎng)和訓(xùn)練學(xué)生創(chuàng)造性思維的原則、方法。在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造思維、激發(fā)創(chuàng)造力是時代對我們提出的基本要求。本文就創(chuàng)造思維及數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生創(chuàng)造思維能力談?wù)勛约旱囊恍┛捶ā?/p>
一、創(chuàng)造思維及其特征
思維是具有意識的人腦對客觀事物的本質(zhì)屬性和內(nèi)部規(guī)律性的概括的間接反映。
創(chuàng)造思維就是合理地、協(xié)調(diào)地運用邏輯思維、形象思維及直覺思維等多種思維方式,使有關(guān)信息有序化,以產(chǎn)生積極的效果或成果。數(shù)學(xué)教學(xué)中所研究的創(chuàng)造思維,一般是指對思維主體來說是新穎獨到的一種思維活動。它包括發(fā)現(xiàn)新事物、提示新規(guī)律、建立新理論、創(chuàng)造新方法、獲得新成果、解決新問題等思維過程,盡管這種思維結(jié)果通常并不是首次發(fā)現(xiàn)或超越常規(guī)的思考。
創(chuàng)造思維是創(chuàng)造力的核心。它具有獨特性、新穎性、求異性、批判性等思維特征,思考問題的突破常規(guī)、新穎獨特和靈活變通是創(chuàng)造思維的具體表現(xiàn),這種思維能力是正常人經(jīng)過培養(yǎng)可以具備的。
二、創(chuàng)設(shè)適宜的教學(xué)環(huán)境
教師必須用尊重、平等的情感去感染學(xué)生,使課堂充滿民主、寬松、和諧的氣氛,只有這樣學(xué)生才會熱情高漲,才能大膽想象、敢于質(zhì)疑、有所創(chuàng)新,這是培養(yǎng)學(xué)生創(chuàng)造性思維能力的重要前提。
教育創(chuàng)新是教師的職責(zé)。教師應(yīng)該深入鉆研教材,挖掘教材本身蘊藏的創(chuàng)造因素,對知識進行創(chuàng)造性的加工,使課堂教學(xué)有創(chuàng)造教育的內(nèi)容。例如教學(xué)軸對稱圖形時,提出“在河邊修一個水塔,使到陳村、李莊所用的水管長度最少,如何選定這個水塔的位置?”從而把課本內(nèi)容引申到實際生活中來,使教學(xué)富有實踐性、科學(xué)性、現(xiàn)代性。突出學(xué)生的“主體”地位。要發(fā)揚教學(xué)民主,尊重學(xué)生中的不同觀點,保護學(xué)生中學(xué)習(xí)爭辯的積極性,讓學(xué)生敢于想象,敢于質(zhì)疑,敢于標新立異,敢于挑戰(zhàn)權(quán)威,給每個學(xué)生發(fā)表自己見解的機會,最大限度地消除學(xué)生的心理障礙,形成學(xué)生主動學(xué)習(xí),積極參與的課堂教學(xué)氛圍,處理學(xué)生學(xué)習(xí)行為時,尊重他們的想法,鼓勵別出心裁等。
三、怎樣培養(yǎng)學(xué)生的創(chuàng)造思維能力
1、指導(dǎo)觀察
觀察是信息輸入的通道,是思維探索的大門。敏銳的觀察力是創(chuàng)造思維的起步器。可以說,沒有觀察就沒有發(fā)現(xiàn),更不能有創(chuàng)造。兒童的觀察能力是在學(xué)習(xí)過程中實現(xiàn)的,在課堂中,怎樣培養(yǎng)學(xué)生的觀察力呢?
首先,在觀察之前,要給學(xué)生提出明確而又具體的目的、任務(wù)和要求。其次,要在觀察中及時指導(dǎo)。比如要指導(dǎo)學(xué)生根據(jù)觀察的對象有順序地進行觀察,要指導(dǎo)學(xué)生選擇適當(dāng)?shù)挠^察方法,要指導(dǎo)學(xué)生及時地對觀察的結(jié)果進行分析總結(jié)等。第三,要科學(xué)地運用直觀教具及現(xiàn)代教學(xué)技術(shù),以支持學(xué)生對研究的問題做仔細、深入的觀察。第四,要努力培養(yǎng)學(xué)生濃厚的觀察興趣。如學(xué)習(xí)《三角形的認識》,學(xué)生對“圍成的”理解有困難。教師可讓學(xué)生準備10厘米、16厘米、8厘米、6厘米的小棒各一根,選擇其中三根擺成一個三角形。在拼擺中,學(xué)生發(fā)現(xiàn)用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,當(dāng)選16厘米、8厘米、6厘米長的三根小棒時,首尾不能相接,不能拼成三角形。借助圖形,學(xué)生不但直觀的感知了三角形“兩邊之和不能小于第三邊”,而且明白了“三角形”不是由“三條線段組成”的圖形,而應(yīng)該是由“三條線段圍成”的圖形,使學(xué)生對三角形的定義有了清晰的認識。因此,在概念的形成中教師要努力創(chuàng)造條件,給學(xué)生提供自主探索的機會和充分的思考空間,讓學(xué)生在觀察、操作、實驗、歸納和分析的過程中親自經(jīng)歷概念的形成和發(fā)展過程,進行數(shù)學(xué)的再發(fā)現(xiàn)、再創(chuàng)造。
2、引導(dǎo)想象
想象是思維探索的翅膀。愛因斯坦說:"想象比知識更重要,因為知識是有限的,而想象可以包羅整個宇宙。"在教學(xué)中,引導(dǎo)學(xué)生進行數(shù)學(xué)想象,往往能縮短解決問題的時間,獲得數(shù)學(xué)發(fā)現(xiàn)的機會,鍛煉數(shù)學(xué)思維。想象不同于胡思亂想。數(shù)學(xué)想象一般有以下幾個基本要素。第一,因為想象往往是一種知識飛躍性的聯(lián)結(jié),因此要有扎實的基礎(chǔ)知識和豐富的經(jīng)驗的支持。第二,是要有能迅速擺脫表象干擾的敏銳的洞察力和豐富的想象力。第三,要有執(zhí)著追求的情感。因此,培養(yǎng)學(xué)生的想象力,首先要使學(xué)生學(xué)好有關(guān)的基礎(chǔ)知識。其次,新知識的產(chǎn)生除去推理外,常常包含前人的想象因素,因此在教學(xué)中應(yīng)根據(jù)教材潛在的因素,創(chuàng)設(shè)想象情境,提供想象材料,誘發(fā)學(xué)生的創(chuàng)造性想象。如在學(xué)習(xí)《平行四邊形的面積》時,教師利用多媒體呈現(xiàn)學(xué)生熟悉的情景:種植園里各種植物郁郁蔥蔥,分別種在劃成不同形狀的地塊上。然后出示種有竹子和杜鵑的地塊,分別呈正方形和長方形,要求算一算它們的種植面積,學(xué)生運用已學(xué)的知識很快解決了問題。接著出示一塊形如平行四邊形的青菜地,讓學(xué)生猜一猜它的面積大概是多少?平行四邊形的面積應(yīng)怎么求?學(xué)生對未知領(lǐng)域的探索有天然的好奇,思維的積極性被激發(fā),紛紛根據(jù)前面的知識作出如下猜測:①、面積是長邊和短邊長度的積。②、長邊和它的高的積。③、短邊和它的高的積。④、先拼成一個長方形,跟這個長方形的面積有關(guān)……教師一一板書出來,學(xué)生見自己的思維結(jié)果被肯定,心理上有一種小小的成就,從而更激起了主動探索的欲望。
3、鼓勵求異
求異思維是創(chuàng)造思維發(fā)展的基礎(chǔ)。它具有流暢性、變通性和創(chuàng)造性的特征。求異思維是指從不同角度,不同方向,去想別人沒想不到,去找別人沒有找到的方法和竅門。要求異必須富有聯(lián)想,好于假設(shè)、懷疑、幻想,追求盡可能新,盡可能獨特,即與眾不同的思路。課堂教學(xué)要鼓勵學(xué)生去大膽嘗試,勇于求異,激發(fā)學(xué)生創(chuàng)新欲望。
學(xué)起于思,思源于疑,疑則誘發(fā)創(chuàng)新。教師要創(chuàng)設(shè)求異的情境,鼓勵學(xué)生多思、多問、多變,訓(xùn)練學(xué)生勇于質(zhì)疑,在探索和求異中有所發(fā)現(xiàn)和創(chuàng)新。本人教授“§2.7平行線的性質(zhì)”一節(jié)時深有感觸,一道例題最初是這樣設(shè)計的:
例:如圖,已知a//b,c//d,∠1=115,
⑴求∠2與∠3的度數(shù),
⑵從計算你能得到∠1與∠2是什么關(guān)系?
學(xué)生很快得出答案,并得到∠1=∠2。我正要向下講解,這時一位同學(xué)舉手發(fā)言:“老師,不用知道∠1=115°也能得出∠1=∠2?!蔽耶?dāng)時非常高興,因為他回答了我正要講而未講的問題,我讓他講述了推理的過程,同學(xué)們報以熱烈的掌聲。我又借題發(fā)揮,隨之改為:
已知:a//b,c//d求證:∠1=∠2
讓學(xué)生寫出證明,并回答各自不同的證法。隨后又變化如下:
變式1:已知a//b,∠1=∠2,求證:c//d。
變式2:已知c//d,∠1=∠2,求證:a//b。
變式3:已知a//b,問∠1=∠2嗎?(展開討論)
這樣,通過一題多證和一題多變,拓展了思維空間,培養(yǎng)學(xué)生的創(chuàng)造性思維。對初學(xué)幾何者來說,有利于培養(yǎng)他們學(xué)習(xí)幾何的濃厚興趣和創(chuàng)新精神。
數(shù)學(xué)教學(xué)中,發(fā)展創(chuàng)造性思維能力是能力培養(yǎng)的核心,而逆向思維、發(fā)散思維和求異思維是創(chuàng)新學(xué)習(xí)所必備的思維能力。數(shù)學(xué)教學(xué)要讓學(xué)生逐步樹立創(chuàng)新意識,獨立思考,這應(yīng)成為我們以后教與學(xué)的著力點。
4、誘發(fā)靈感
靈感是一種直覺思維。它大體是指由于長期實踐,不斷積累經(jīng)驗和知識而突然產(chǎn)生的富有創(chuàng)造性的思路。它是認識上質(zhì)的飛躍。靈感的發(fā)生往往伴隨著突破和創(chuàng)新。
在教學(xué)中,教師應(yīng)及時捕捉和誘發(fā)學(xué)生學(xué)習(xí)中出現(xiàn)的靈感,對于學(xué)生別出心裁的想法,違反常規(guī)的解答,標新立異的構(gòu)思,哪怕只有一點點的新意,都應(yīng)及時給予肯定。同時,還應(yīng)當(dāng)運用數(shù)形結(jié)合、變換角度、類比形式等方法去誘導(dǎo)學(xué)生的數(shù)學(xué)直覺和靈感,促使學(xué)生能直接越過邏輯推理而尋找到解決問題的突破口。例如,有這樣的一道題:把3/7、6/13、4/9、12/25用">"號排列起來。對于這道題,學(xué)生通常都是采用先通分再比較的方法,但由于公分母太大,解答非常麻煩。為此,我在教學(xué)中,安排學(xué)生回頭觀察后桌同學(xué)抄的題目(7/3、13/6、9/4、25/12),然后再想一想可以怎樣比較這些數(shù)的大小,倒過來的數(shù)字誘發(fā)了學(xué)生瞬間的靈感,使很多學(xué)生尋找到把這些分數(shù)化成同分子分數(shù)再比較大小的簡捷方法。
總之,人貴在創(chuàng)造,創(chuàng)造思維是創(chuàng)造力的核心。培養(yǎng)有創(chuàng)新意識和創(chuàng)造才能的人才是中華民族振興的需要,讓我們共同從課堂做起。
結(jié)束語:學(xué)生的創(chuàng)造思維能力如何培養(yǎng)如何提高是學(xué)校教學(xué)工件新的難題,以上僅代表本人的觀點,不足之處請大家指正。