金屬納米材料的應(yīng)用范文
時(shí)間:2024-01-10 17:57:19
導(dǎo)語:如何才能寫好一篇金屬納米材料的應(yīng)用,這就需要搜集整理更多的資料和文獻(xiàn),歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。
篇1
納米材料和納米技術(shù)是20世紀(jì)后期出現(xiàn)的新型材料和高新技術(shù)。由于納米材料的小尺寸效應(yīng)、表面效應(yīng)、量子尺寸效應(yīng)和宏觀量子隧道效應(yīng),使它與常規(guī)材料相比具有獨(dú)特的優(yōu)異性能。隨著納米技術(shù)的迅速發(fā)展,各種類型納米材料不斷涌現(xiàn),如納米陶瓷粉末、納米金屬材料、納米金屬、納米化合物、納米生物材料等。在這些材料中納米金屬材料是重要的研究方向,在科研人員的不斷探索中,納米金屬粉末的制備技術(shù)得到了不斷革新和發(fā)展。許多納米金屬粉末作為新型抗菌材料(如抗病毒物質(zhì)、抗菌材料、防污漆和抗真菌材料)的替代品被重點(diǎn)研究。納米金屬粉末也因其在冶金、催化和軍事等領(lǐng)域中廣泛的應(yīng)用,成為研究人員的熱點(diǎn)研究方向。
全書內(nèi)容共分為12章:1.納米金屬顆粒的熱力學(xué)數(shù)據(jù)的總體評(píng)價(jià),從熱力學(xué)背景知識(shí)出發(fā),介紹納米金屬顆粒尺寸與材料性能的關(guān)系,并將實(shí)驗(yàn)和計(jì)算的熔解溫度進(jìn)行對(duì)比;2.單個(gè)納米金屬顆粒的數(shù)值模擬,包括分子動(dòng)力學(xué)模擬、與尺寸相關(guān)的材料性質(zhì)、兩種納米顆粒的燒結(jié)研究和納米顆粒在氧氣環(huán)境下的氧化研究以及具有核-殼結(jié)構(gòu)的顆粒的加熱和冷卻等內(nèi)容;3.放電爆炸下的納米金屬顆粒,主要介紹納米金屬的電爆炸絲生產(chǎn)技術(shù);4.納米金屬粉末的電爆炸絲生產(chǎn)方法,包括如何用等離子技術(shù)對(duì)納米顆粒進(jìn)行再凝結(jié)、納米鋁粉的特征、納米粉末的化學(xué)鈍化、鋁納米顆粒的微膠囊化等內(nèi)容;5.納米金屬顆粒團(tuán)聚物的結(jié)構(gòu),包括表征團(tuán)聚物結(jié)構(gòu)的實(shí)驗(yàn)技術(shù)、力學(xué)穩(wěn)定性、熱穩(wěn)定性、以及氣體運(yùn)輸對(duì)反應(yīng)速度的限速作用等內(nèi)容;6.納米金屬粉末的鈍化,包括理論和實(shí)驗(yàn)背景以及鈍化納米顆粒的特征;7.納米金屬粉末的安全,包括納米顆粒在空氣中氧化的基本現(xiàn)象、對(duì)靜電放電的靈敏度、根據(jù)災(zāi)害分級(jí)對(duì)納米粉末進(jìn)行排序、包裝要求等;8.鋁粉末與液態(tài)水和水蒸氣的反應(yīng),包括研究液態(tài)、氣態(tài)水和鋁粉末反應(yīng)的實(shí)驗(yàn)技術(shù)和不同條件下的鋁粉末的反應(yīng)情況;9.基于硼烷氨和硼氫化鈉的儲(chǔ)氫系統(tǒng)的鈷納米催化劑,主要介紹物理化學(xué)方法;10.機(jī)械研磨對(duì)反應(yīng)活性和亞穩(wěn)態(tài)納米材料的預(yù)處理;11.金屬微粒燃燒的原位表征:非平衡診斷,包括固體材料的點(diǎn)火和燃燒、鋁的反應(yīng)機(jī)理、火焰管、火焰溫度等內(nèi)容;12.含能系統(tǒng)中的鋁納米粉末的表征和燃燒。
本書重點(diǎn)介紹納米金屬粉末的表征、氧化和燃燒、生產(chǎn)技術(shù)和安全知識(shí)。本書適合無機(jī)非金屬材料工程、材料科學(xué)與工程、復(fù)合材料與工程、金屬材料工程和納米材料科學(xué)與技術(shù)等專業(yè)的研究生或相關(guān)領(lǐng)域的研究人員閱讀和參考。
郭抒,博士生
(中國(guó)科學(xué)院理化技術(shù)研究所)
篇2
本書重點(diǎn)闡述了有關(guān)機(jī)械納米結(jié)構(gòu)化的先進(jìn)研究方法和研究?jī)?nèi)容,如嚴(yán)重的塑性變形,包括高壓扭轉(zhuǎn)、等通道轉(zhuǎn)角處理、循環(huán)擠壓壓縮、累積疊軋焊、表面機(jī)械研磨處理等。本書內(nèi)容以工程應(yīng)用為導(dǎo)向,提出的方法有利于集成到現(xiàn)有的生產(chǎn)工藝中。此外,為了發(fā)揮所期望的功能,本書也對(duì)結(jié)構(gòu)―性質(zhì)關(guān)系和影響納米結(jié)構(gòu)的方法進(jìn)行了詳細(xì)回顧。本書最后展望了未來發(fā)展,對(duì)機(jī)械工程和納米結(jié)構(gòu)各個(gè)領(lǐng)域的應(yīng)用進(jìn)行了概述。
本書共分三部分,31章:第一部分 納米材料的機(jī)械性能,含第1-10章:1.納晶材料的機(jī)械性能;2.納米結(jié)構(gòu)輕金屬材料的優(yōu)越機(jī)械性能和創(chuàng)新潛力;3.認(rèn)識(shí)納米結(jié)構(gòu)貝氏體的機(jī)械性能;4.納晶材料的本征強(qiáng)度;5.現(xiàn)代光學(xué)顯微鏡技術(shù)和納米結(jié)構(gòu)材料基于AFM的測(cè)量;6.強(qiáng)度和電導(dǎo)率納米銅和SPD 115銅基合金;7.機(jī)械性能與等徑彎曲通道擠壓(ECAP)過程的轉(zhuǎn)位邊界機(jī)制;8.納米粒子的機(jī)械性能:在透射電子顯微鏡內(nèi)部原位表征納米壓痕;9.提高納米結(jié)構(gòu)的機(jī)械特性―特別考慮動(dòng)力荷載條件下;10.生物納米材料的機(jī)械性能。
第二部分 機(jī)械納米結(jié)構(gòu)化方法,含第11-21章:11. SPD過程-機(jī)械納米方法;12.機(jī)械合金化/銑;13. 等徑彎曲通道擠壓(ECAP);14.噴丸加工獲取納米結(jié)構(gòu)表面:過程和處理的表面的性能;15.納米晶化表面機(jī)械研磨處理;16.制備納米材料的機(jī)械研磨;17超聲沖擊處理-適用于金屬材料表面納米結(jié)構(gòu)的有效方法;18.壓縮條件下的金屬納米結(jié)構(gòu);19.銑削在合成納米結(jié)構(gòu)金屬基復(fù)合材料粉體的應(yīng)用;20.通過銑削加工的合成與納米粉體特性;21.來自活性球磨的納米結(jié)構(gòu)。
第三部分 機(jī)械納米結(jié)構(gòu)化的應(yīng)用與發(fā)展,含第22-31章:22.通向納米級(jí)別的機(jī)械化學(xué)的途徑(Mechanochemical Route);23.粉末微粒的氣蝕解體;24.寶石中的金屬納米材料的獨(dú)特性能應(yīng)用;25.含高能球磨的電瓷復(fù)合材料混合處理過程;26.開發(fā)等徑彎曲通道擠壓技術(shù)應(yīng)用于納晶材料上細(xì)化;27. 機(jī)械處理制備的雙極氧化物納米粉體;28作為納米材料合成與加工的通用方法高能球磨;29.合并機(jī)械合金化產(chǎn)品/粉;30.噴丸加工衍生的表面納米結(jié)構(gòu)技術(shù):最新進(jìn)展;31.機(jī)械化學(xué)合成的納米材料用于能量轉(zhuǎn)換和存儲(chǔ)設(shè)備。
篇3
納米材料和納米科技被廣泛認(rèn)為是二十一世紀(jì)最重要的新型材料和科技領(lǐng)域之一。早在二十世紀(jì)60年代,英國(guó)化學(xué)家Thomas就使用“膠體”來描述懸浮液中直徑為1nm-100nm的顆粒物。1992年,《NanostructuredMaterials》正式出版,標(biāo)志著納米材料學(xué)成為一門獨(dú)立的科學(xué)。納米材料是指任意一維的尺度小于100nm的晶體、非晶體、準(zhǔn)晶體以及界面層結(jié)構(gòu)的材料。當(dāng)粒子尺寸小至納米級(jí)時(shí),其本身將具有表面與界面效應(yīng)、量子尺寸效應(yīng)、小尺寸效應(yīng)和宏觀量子隧道效應(yīng),這些效應(yīng)使得納米材料具有很多奇特的性能。自1991年Iijima首次制備了碳納米管以來,一維納米材料由于具有許多獨(dú)特的性質(zhì)和廣闊的應(yīng)用前景而引起了人們的廣泛關(guān)注。納米結(jié)構(gòu)無機(jī)材料因具有特殊的電、光、機(jī)械和熱性質(zhì)而受到人們?cè)絹碓蕉嗟闹匾?。美?guó)自1991年開始把納米技術(shù)列入“政府關(guān)鍵技術(shù)”,我國(guó)的自然科學(xué)基金等各種項(xiàng)目和研究機(jī)構(gòu)都把納米材料和納米技術(shù)列為重點(diǎn)研究項(xiàng)目。由于納米材料的形貌和尺寸對(duì)其性能有著重要的影響,因此,納米材料形貌和尺寸的控制合成是非常重要的。作為高級(jí)納米結(jié)構(gòu)材料和納米器件的基本構(gòu)成單元(Bui1dingBlocks),納米顆粒的合成與組裝是納米科技的重要組成部分和基礎(chǔ)。本文簡(jiǎn)單綜述了納米材料合成與制備中常用的幾種方法,并對(duì)其優(yōu)劣進(jìn)行了比較。
2納米材料的合成與制備方法
2.1物理制備方法
2.1.1機(jī)械法
機(jī)械法有機(jī)械球磨法、機(jī)械粉碎法以及超重力技術(shù)。機(jī)械球磨法無需從外部供給熱能,通過球磨讓物質(zhì)使材料之間發(fā)生界面反應(yīng),使大晶粒變?yōu)樾【Я?得到納米材料。范景蓮等采用球磨法制備了鎢基合金的納米粉末。xiao等利用金屬羰基粉高能球磨法獲得納米級(jí)的Fe-18Cr-9W合金粉末。機(jī)械粉碎法是利用各種超微粉機(jī)械粉碎和電火花爆炸等方法將原料直接粉碎成超微粉,尤其適用于制備脆性材料的超微粉。超重力技術(shù)利用超重力旋轉(zhuǎn)床高速旋轉(zhuǎn)產(chǎn)生的相當(dāng)于重力加速度上百倍的離心加速度,使相間傳質(zhì)和微觀混合得到極大的加強(qiáng),從而制備納米材料。劉建偉等以氨氣和硝酸鋅為原料,應(yīng)用超重力技術(shù)制備粒徑20nm—80nm、粒度分布均勻的ZnO納米顆粒。
2.1.2氣相法
氣相法包括蒸發(fā)冷凝法、溶液蒸發(fā)法、深度塑性變形法等。蒸發(fā)冷凝法是在真空或惰性氣體中通過電阻加熱、高頻感應(yīng)、等離子體、激光、電子束、電弧感應(yīng)等方法使原料氣化或形成等離子體并使其達(dá)到過飽和狀態(tài),然后在氣體介質(zhì)中冷凝形成高純度的納米材料。Takaki等在惰性氣體保護(hù)下,利用氣相冷凝法制備了懸浮的納米銀粉。杜芳林等制備出了銅、鉻、錳、鐵、鎳等納米粉體,粒徑在30nm—50nm范圍內(nèi)可控。魏勝用蒸發(fā)冷凝法制備了納米鋁粉。溶液蒸發(fā)法是將溶劑制成小滴后進(jìn)行快速蒸發(fā),使組分偏析最小,一般可通過噴霧干燥法、噴霧熱分解法或冷凍干燥法加以處理。深度塑性變形法是在準(zhǔn)靜態(tài)壓力的作用下,材料極大程度地發(fā)生塑性變形,而使尺寸細(xì)化到納米量級(jí)。有文獻(xiàn)報(bào)道,Φ82mm的Ge在6GPa準(zhǔn)靜壓力作用后,再經(jīng)850℃熱處理,納米結(jié)構(gòu)開始形成,材料由粒徑100nm的等軸晶組成,而溫度升至900℃時(shí),晶粒尺寸迅速增大至400nm。
2.1.3磁控濺射法與等離子體法
濺射技術(shù)是采用高能粒子撞擊靶材料表面的原子或分子,交換能量或動(dòng)量,使得靶材料表面的原子或分子從靶材料表面飛出后沉積到基片上形成納米材料。在該法中靶材料無相變,化合物的成分不易發(fā)生變化。目前,濺射技術(shù)已經(jīng)得到了較大的發(fā)展,常用的有陰極濺射、直流磁控濺射、射頻磁控濺射、離子束濺射以及電子回旋共振輔助反應(yīng)磁控濺射等技術(shù)。等離子體法是利用在惰性氣氛或反應(yīng)性氣氛中通過直流放電使氣體電離產(chǎn)生高溫等離子體,從而使原料溶液化合蒸發(fā),蒸汽達(dá)到周圍冷卻形成超微粒。等離子體溫度高,能制備難熔的金屬或化合物,產(chǎn)物純度高,在惰性氣氛中,等離子法幾乎可制備所有的金屬納米材料。
以上介紹了幾種常用的納米材料物理制備方法,這些制備方法基本不涉及復(fù)雜的化學(xué)反應(yīng),因此,在控制合成不同形貌結(jié)構(gòu)的納米材料時(shí)具有一定的局限性。
2.2化學(xué)制備方法
2.2.1溶膠—凝膠法
溶膠—凝膠法的化學(xué)過程首先是將原料分散在溶劑中,然后經(jīng)過水解反應(yīng)生成活性單體,活性單體進(jìn)行聚合,開始成為溶膠,進(jìn)而生成具有一定空間結(jié)構(gòu)的凝膠。Stephen等利用高分子加成物(由烷基金屬和含N聚合物組成)在溶液中與H2S反應(yīng),生成的ZnS顆粒粒度分布窄,且被均勻包覆于聚合物基體中,粒徑范圍可控制在2nm-5nm之間。MarcusJones等以CdO為原料,通過加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子點(diǎn),顆粒平均粒徑為3.3nm,量子產(chǎn)率(quantumyield,QY)為13.8%。
2.2.2離子液法
離子液作為一種特殊的有機(jī)溶劑,具有獨(dú)特的物理化學(xué)性質(zhì),如粘度較大、離子傳導(dǎo)性較高、熱穩(wěn)定性高、低毒、流動(dòng)性好以及具有較寬的液態(tài)溫度范圍等。即使在較高的溫度下,離子液仍具有低揮發(fā)性,不易造成環(huán)境污染,是一類綠色溶劑。因此,離子液是合成不同形貌納米結(jié)構(gòu)的一種良好介質(zhì)。Jiang等以BiCl3和硫代乙酰胺為原料,在室溫下于離子液介質(zhì)中合成出了大小均勻的、尺寸為3μm—5μm的Bi2S3納米花。他們認(rèn)為溶液的pH值、反應(yīng)溫度、反應(yīng)時(shí)間等條件對(duì)納米花的形貌和晶相結(jié)構(gòu)有很重要的影響。他們證實(shí),這些納米花由直徑60nm—80nm的納米線構(gòu)成,隨老化時(shí)間的增加,這些納米線會(huì)從母花上坍塌,最終形成單根的納米線。趙榮祥等采用硝酸鉍和硫脲為先驅(qū)原料,以離子液為反應(yīng)介質(zhì),合成了單晶Bi2S3納米棒。
2.2.3溶劑熱法
溶劑熱法是指在密閉反應(yīng)器(如高壓釜)中,通過對(duì)各種溶劑組成相應(yīng)的反應(yīng)體系加熱,使反應(yīng)體系形成一個(gè)高溫高壓的環(huán)境,從而進(jìn)行實(shí)現(xiàn)納米材料的可控合成與制備的一種有效方法。Lou等采用單源前驅(qū)體Bi[S2P(OC8H17)2]3作反應(yīng)物,用溶劑熱法制得了高度均勻的正交晶系Bi2S3納米棒,且該方法適于大規(guī)模生產(chǎn)。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物為原料,甘油和水為溶劑,采用溶劑熱法在高壓釜中160℃反應(yīng)24-72h制得了長(zhǎng)達(dá)數(shù)毫米的Bi2S3納米帶。
2.2.4微乳法
微乳液制備納米粒子是近年發(fā)展起來的新興的研究領(lǐng)域,具有制得的粒子粒徑小、粒徑接近于單分散體系等優(yōu)點(diǎn)。1943年Hoar等人首次報(bào)道了將水、油、表面活性劑、助表面活性劑混合,可自發(fā)地形成一種熱力學(xué)穩(wěn)定體系,體系中的分散相由80nm-800nm的球形或圓柱形顆粒組成,并將這種體系定名微乳液。自那以后,微乳理論的應(yīng)用研究得到了迅速發(fā)展。1982年,Boutonnet等人應(yīng)用微乳法,制備出Pt、Pd等金屬納米粒子。微乳法制備納米材料,由于它獨(dú)特的工藝性能和較為簡(jiǎn)單的實(shí)驗(yàn)裝置,在實(shí)際應(yīng)用中受到了國(guó)內(nèi)外研究者的廣泛關(guān)注。
篇4
論文摘要:本文介紹了納米技術(shù)、納米材料的基本概念、原理、特征和各種納米材料在涂料領(lǐng)域的應(yīng)用;闡述了納米材料在應(yīng)用中所存在的技術(shù)問題,以及納米技術(shù)在涂料領(lǐng)域的發(fā)展前景。
1 納米技術(shù)及納米材料
1.1納米技術(shù)
納米技術(shù)是20世紀(jì)80年代末誕生且正在崛起的新技術(shù),主要是在0.1-100nm尺度范圍內(nèi),研究物質(zhì)組成的體系中電子、原子和分子運(yùn)動(dòng)規(guī)律與相互作用,其研究目的是按人的意志直接操縱電子、原子或分子,研制出人們所希望的、具有特定功能的材料和制品。納米科技將成為21世紀(jì)科學(xué)技術(shù)發(fā)展的主流,它不僅是信息技術(shù)、生物技術(shù)等新興領(lǐng)域發(fā)展的推動(dòng)力,而且因其具有獨(dú)特的物理、化學(xué)、生物特性為涂料等領(lǐng)域的發(fā)展提供了新的機(jī)遇。
1.2納米材料
納米材料主要由納米晶粒和晶粒界面兩部分組成,其晶粒中原子的長(zhǎng)程有序排列和無序界面成分的組成后有大量的界面(6×1025m3/10nm晶粒尺寸),晶界原子達(dá)15%~50%,且原子排列互不相同,界面周圍的晶格原子結(jié)構(gòu)互不相關(guān),使得納米材料成為介于晶態(tài)與非晶態(tài)之間的一種新的結(jié)構(gòu)狀態(tài)[1]。 狹義上,納米材料是指粒徑在0.1-100nm范圍內(nèi)的或具有特殊物理化學(xué)性能的材料。廣義上,納米材料是指在三維空間中至少有一維長(zhǎng)度在0.1-100nm范圍內(nèi)的或具有納米結(jié)構(gòu)的材料。按化學(xué)組成可分為:納米金屬、納米晶體、納米陶瓷、納米玻璃、納米高分子和納米復(fù)合材料等。由于納米材料具有表面效應(yīng)、體積效應(yīng)、量子尺寸效應(yīng)、宏觀量子隧道效應(yīng)和一些奇異的光、電、磁等性能,將其用于涂料中后,除了可以改性傳統(tǒng)涂料外,更為重要的是可以制備各種功能涂料,如具有抗輻射、耐老化、抗菌殺菌、隱身等特殊功能的涂料。
2 納米材料在涂料領(lǐng)域中的應(yīng)用
現(xiàn)階段納米材料在涂料中的應(yīng)用主要為兩種情況[2]:(1)納米材料經(jīng)特殊處理后,添加到傳統(tǒng)涂料中分散后制成的納米復(fù)合涂料(Nanocomposite coating),使涂料的各項(xiàng)指標(biāo)均得到了顯著的提高。將納米離子用于涂料中所得到的一類具有抗輻射、耐老化、具有某些特殊功能的涂料稱為納米復(fù)合涂料。(2)完全由納米粒子和有機(jī)膜材料形成的納米涂層材料,通常所說的納米涂料均為有機(jī)納米復(fù)合涂料。目前,用于涂料的納米粒子主要是某些金屬氧化物(如TiO2、Fe2O2、ZnO等)、納米金屬粉末(如納米Al、Co、Ti、Cr、Nd等)、無機(jī)鹽類(CaCO3)和層狀硅酸鹽(如一堆的納米級(jí)粘土)[3]。
2.1納米TiO2在涂料中的應(yīng)用
2.1.1隨角異色效應(yīng)
由于納米二氧化鈦晶體的粒徑大約是普通鈦白粉的1/10,遠(yuǎn)遠(yuǎn)低于可見光的波長(zhǎng),本身具有透明性,又對(duì)可見光具有一定程度的遮蓋,透射光在鋁粉表面反射與在納米二氧化鈦表面反射產(chǎn)生了不同的視覺效果。到1991年,全世界已有11種含超細(xì)二氧化鈦的金屬閃光漆。目前,福特、克萊斯樂、豐田、馬自達(dá)等許多著名的汽車制造公司都已使用含有超細(xì)二氧化鈦的金屬閃光漆[4]。
2.1.2抗老化性能
提高材料抗老化性能的傳統(tǒng)方法是添加有機(jī)紫外線吸收劑,納米TiO2粒子是一種穩(wěn)定的、無毒的紫外光吸收劑。因?yàn)橛米魍苛匣系母叻肿訕渲艿教栔凶贤饩€的長(zhǎng)期照射會(huì)導(dǎo)致分子鏈的降解,影響涂膜的物理性能,因此若能屏蔽太陽光中的紫外線,就可大幅提高漆膜的耐老化性能。郭剛[5]等研究發(fā)現(xiàn)利用金紅石型納米TiO2優(yōu)異的紫外線屏蔽性能改性傳統(tǒng)耐候型聚酯——TGIC粉末涂料可以大幅度地提高其耐老化性能。
2.1.3抗菌殺毒
納米TiO2有抗菌殺毒作用,用于涂料是涂料發(fā)展中的一個(gè)重大成就。納米二氧化鈦具有高的光催化性,在紫外光的照射下能分解出自由移動(dòng)的帶負(fù)電的電子e-和帶正電的空穴h+形成電子——空穴對(duì), 該電子——空穴對(duì)能與空氣中的氧和 H2O發(fā)生作用,通過一系列化學(xué)反應(yīng)形成原子氧(O)氫氧自由基(OH), 這種原子氧和氫氧自由基具有很高的化學(xué)活性,能與細(xì)菌中的有機(jī)物反應(yīng)生成二氧化碳和水,從而達(dá)到殺滅細(xì)菌的作用。[6]
納米TiO2的抗菌殺毒作用已成為國(guó)內(nèi)外關(guān)注的焦點(diǎn)。日本已有不少企業(yè)開發(fā)出納米TiO2光催化涂料并實(shí)現(xiàn)了商業(yè)化生產(chǎn)。目前,由于國(guó)內(nèi)對(duì)于納米TiO2的研究大多還處于實(shí)驗(yàn)階段,在涂料性能的提高和完善方面還有大量的工作要做,因此,對(duì)納米涂料的研究要不斷深入,以提高我國(guó)涂料的工業(yè)水平,推動(dòng)納米涂料的發(fā)展和應(yīng)用。
2.2納米SiO2在涂料中的應(yīng)用
納米SiO2具有三維網(wǎng)狀結(jié)構(gòu),擁有龐大的比表面積,表現(xiàn)出極大的活性,能在涂料干燥時(shí)形成網(wǎng)狀結(jié)構(gòu),同時(shí)增加了涂料的強(qiáng)度和光潔度,而且還提高了顏料的懸浮性,能保持涂料的顏色長(zhǎng)期不變。在建筑內(nèi)外墻涂料中,若添加納米SiO2,可明顯改善涂料的開罐效果,涂料不分層,具有觸變性、防流掛、施工性能良好等優(yōu)點(diǎn),尤其是抗沾污性能大大提高,具有優(yōu)良的自清潔能力和附著力。納米SiO2還可與有機(jī)顏料配用,可獲得光致變色涂料。
欲使納米SiO2材料在涂料中真正地得到廣泛應(yīng)用,須解決納米SiO2在涂料中的分散穩(wěn)定性問題。通常的做法是加入表面活性劑包裹微?;蚍葱跄齽┬纬呻p電層的措施。同時(shí)在分散時(shí)可配合使用超聲波分散。
2.3納米ZnO在涂料中的應(yīng)用
納米ZnO等由于質(zhì)量輕、厚度薄、顏色淺、吸波能力強(qiáng)等優(yōu)點(diǎn)而成為吸波涂料研究的熱點(diǎn)之一。在陽光的照射下納米ZnO在水和空氣中具有極強(qiáng)的化學(xué)活性,能與多種有機(jī)物發(fā)生氧化反應(yīng)(包括細(xì)菌中的有機(jī)物),從而把大多數(shù)細(xì)菌和病毒殺死。 ZnO也具有良好的紫外線屏蔽作用,粒徑60nm的ZnO對(duì)波長(zhǎng)300-400nm的紫外線有良好的吸收和散射作用,因此可以作為涂料的抗老化添加劑。日本已經(jīng)開發(fā)出用樹脂包覆的片狀ZnO紫外線屏蔽劑[7]。在涂料中添加納米ZnO可改善它的抗氧化性能,使其具有抗菌性能。
2.4納米氧化鐵在涂料中的應(yīng)用
納米氧化鐵作為顏料無毒無味,具有很好的耐溫、耐侯、耐酸、耐堿以及高彩度、高著色力、高透明度和強(qiáng)烈吸收紫外光的優(yōu)良性能,可廣泛用于高檔汽車涂料、建筑涂料、防腐涂料、粉末涂料,是較好的環(huán)保涂料。紫外線分解木材中的木質(zhì)素而破壞細(xì)胞結(jié)構(gòu)導(dǎo)致木材老化,納米氧化鐵顏料分散于涂層中,由于顆粒直徑小不會(huì)散射光線、涂層成透明狀態(tài)且吸收紫外線輻射,起到保護(hù)木材的作用。左美祥[8]等研究發(fā)現(xiàn):在樹脂中摻入納米級(jí)的TiO2(白色)、Cr2O3(綠色)、Fe2O3(褐色)、ZnO等具有半導(dǎo)體性質(zhì)的粉體,會(huì)產(chǎn)生良好的靜電屏蔽性能。日本松下電器公司研究所據(jù)此成功開發(fā)了適用于電器外殼的樹脂基納米氧化物復(fù)合的靜電屏蔽涂料。與傳統(tǒng)的樹脂基碳黑復(fù)合的涂料相比,樹脂基納米氧化物復(fù)合涂料具有更為優(yōu)異的靜電屏蔽性能,而且后者在顏色選擇方面也更為靈活。用納米級(jí)Fe3O4與樹脂復(fù)合制成了磁性涂料,目前這方面的制備工藝已有所突破而進(jìn)入產(chǎn)業(yè)化階段。
2.5納米CaCO3在涂料中的應(yīng)用
納米CaCO3作為顏料填充劑,具有細(xì)膩、均勻、白度高、光學(xué)性能好等優(yōu)點(diǎn),隨著納米碳酸鈣的粒子微細(xì)化,填料粒表面的原子數(shù)目占整個(gè)總原子數(shù)目的比例增大,使粒子表面的電子結(jié)構(gòu)和晶體結(jié)構(gòu)都發(fā)生變化,到了納米級(jí)水平。填料粒子將成為有限個(gè)原子的集合體,表現(xiàn)出常規(guī)粒子所沒有的表面效應(yīng)和小尺寸效應(yīng),使納米材料具有一系列優(yōu)良的理化性能。它添加到涂料膠乳中,加強(qiáng)了透明性、觸變性和流平性。觸變性是納米CaCO3改善膠乳涂料各項(xiàng)性能的主要因素。同時(shí)能對(duì)涂料形成屏蔽作用,達(dá)到抗紫外老化和防熱老化的目的和增加涂料的隔熱性。
杜振霞[9]等研究表明:在納米CaCO3改性的涂料中,如果CaCO3固相體積分?jǐn)?shù)達(dá)到20%時(shí),涂料的粘度曲線存在低剪切稀化冪律特征區(qū)和高剪切牛頓兩個(gè)區(qū)域,而且有明顯的觸變性。當(dāng)乳膠漆聚合物乳液的粒徑為10-100nm,表面張力非常低,有極好的流平性、流變性、潤(rùn)濕性與滲透性,表現(xiàn)超常規(guī)的特性。
2.6其它新型納米涂料
納米隱身涂料(雷達(dá)波吸收涂料)系指能有效地吸收入射雷達(dá)波并使其散射衰減的一類功能涂料。當(dāng)將納米級(jí)的羧基鐵粉、鎳粉、鐵氧體粉末改性的有機(jī)涂料涂到飛機(jī)、導(dǎo)彈、軍艦等武器裝備上,可使這些裝備具有隱身性能,使它們?cè)诤軐挼念l率范圍內(nèi)可以逃避雷達(dá)的偵察,同時(shí)也有紅外隱身作用。美國(guó)研制的超細(xì)石墨納米吸波涂料,對(duì)雷達(dá)波的吸收率大于99%,其他金屬超細(xì)粉末如Al,Co,Ti,Cr,Nd,Mo等,也具有很好的潛力。法國(guó)研制出一種寬頻微波吸收涂層,這種吸收涂層由粘結(jié)劑和納米材料、填充材料組成,具有很好的磁導(dǎo)率,在50MHz-50GHz范圍內(nèi)具有良好的吸波性能。我國(guó)也有相關(guān)的研究,如不同粒徑的Fe3O4在1-1000 MHz頻率范圍對(duì)電磁波具有吸收性能,隨著頻率的增加,納米Fe3O4吸收能效增加,且納米粒徑越小,吸收效能越高。
3 納米涂料研究中存在的技術(shù)問題
首先是納米材料在涂料中的穩(wěn)定分散問題。由于納米粒子比表面積和表面張力都很大,容易吸附而發(fā)生團(tuán)聚,在溶液中將其有效地分散成納米級(jí)粒子是非常困難的。尋找合適的分散劑來分散納米材料,并采用合適的穩(wěn)定劑將良好分散的納米材料粒徑穩(wěn)定在納米級(jí),是納米技術(shù)在涂料改性中獲得廣泛應(yīng)用必須解決的最關(guān)鍵問題。其次, 納米材料加入量的適度問題。一般而言,納米材料的用量與涂料性能變化之間的關(guān)系曲線近似于拋物線,開始時(shí)隨著納米材料添加量的增加,涂料性能大幅度提高,到一定值后,涂料性能增幅趨緩,最后達(dá)到峰值:之后,隨著納米材料添加量的進(jìn)一步增加,涂料的性能反而呈迅速下降的趨勢(shì),同時(shí)也增加了成本。因此,做好對(duì)比試驗(yàn),選好納米材料添加量也十分關(guān)鍵。最后,必須開展納米涂料施工工藝的研究。納米涂料就本身而言只是一個(gè)半成品,只有施工完畢后才真正成為最終產(chǎn)品,而現(xiàn)實(shí)情況是人們大都將注意力集中在納米涂料產(chǎn)品本身,而忽略了施工工藝的研究,致使納米涂料無法達(dá)到其應(yīng)有的效果。
4 納米技術(shù)在涂料領(lǐng)域的應(yīng)用展望
今后納米涂料的發(fā)展主要將體現(xiàn)在以下幾個(gè)方面:(1)新的納米原材料的開發(fā)和商品化。即根據(jù)不同材料的物理化學(xué)性能,開發(fā)研制出新納米改性材料,使之具有更多更新的功能。(2)研究納米材料在涂料中的分散和穩(wěn)定性。即探索納米材料顆粒與涂料間的相互作用和混合機(jī)理,并根據(jù)納米粉體在涂料中分散成納米級(jí)和保持分散穩(wěn)定性的原理,開發(fā)新的表面改性劑和穩(wěn)定劑,以提高納米材料在涂料中的改性效果。(3)加強(qiáng)納米材料表征方法和測(cè)試技術(shù)的研究。即為了能更好地利用納米材料的特殊性能,必須研究新的測(cè)試手段對(duì)納米材料進(jìn)行研究,并將傳統(tǒng)納米材料的測(cè)試方法進(jìn)一步完善和標(biāo)準(zhǔn)化。降低成本,并逐漸實(shí)現(xiàn)納米技術(shù)的工業(yè)化、商品化,從而改變我國(guó)高檔、高性能涂料大量依賴進(jìn)口的狀況,是將來的研究重點(diǎn)。
參考文獻(xiàn)
[1] Gleiter.H, On the structure of grain boundaries in metals [J].Materials Science and Engineering,1982, (52):91-102.
[2] 卞明哲.納米材料在建筑涂料中的應(yīng)用[J].江蘇建材,2001,(4):11-12.
[3] 柯昌美,汪厚植.納米復(fù)合涂料的制備[J].涂料工業(yè),2003,33(3):14.
[4] 張浦,鄭典模,梁志鴻.納米TiO2應(yīng)用于涂料的研究進(jìn)展[J].江西化工,2002,(4):20-22.
[5] 郭剛,汪斌華,黃婉霞.納米TiO2的紫外光學(xué)特性及在粉末涂料抗老化改性中的應(yīng)用[J].四川大學(xué)學(xué)報(bào),2004,36(5):54-61.
[6] Marye Anne Fox, Maria T, Dulay. Heterogeneous phototocatalys[J].Chem Rev, 1993,(93):341-357.
[7] P.Stamatakis. Optional Particles Size of Titanium Dioxide and Zinc Oxide for Attention of Ultraviolet Radiation[J].JCT, 1990,62 (789) :95.
[8]左美祥,黃志杰,張玉敏.納米在涂料中的分散及改性作用[J].應(yīng)用基礎(chǔ),2001,(29):1-3.
篇5
關(guān)鍵詞:納米材料,化工,應(yīng)用
1前言
納米材料(又稱超細(xì)微粒、超細(xì)粉未)由表面(界面)結(jié)構(gòu)組元構(gòu)成,是處在原子簇和宏觀物體交界過渡區(qū)域的一種典型系統(tǒng),粒徑介于原子團(tuán)簇與常規(guī)粉體之間,一般不超過100nm,而且界面組元中含有相當(dāng)量的不飽和配位鍵、端鍵及懸鍵。其結(jié)構(gòu)既不同于體塊材料,也不同于單個(gè)的原子。其特殊的結(jié)構(gòu)層次使它在眾多領(lǐng)域特別是在光、電、磁、催化等方面具有非常重大的應(yīng)用價(jià)值。近年來,納米材料在化工生產(chǎn)領(lǐng)域也得到了一定的應(yīng)用,并顯示出它的獨(dú)特魅力。
2納米材料特性
2.1具有很強(qiáng)的表面活性
納米超微顆粒很高的“比表面積”決定了其表面具有很高的活性。免費(fèi)論文參考網(wǎng)。在空氣中,納米金屬顆粒會(huì)迅速氧化而燃燒。利用表面活性,金屬超微顆??赏蔀樾乱淮母咝Т呋瘎?、貯氣材料和低熔點(diǎn)材料。將納米微粒用做催化劑,將使納米材料大顯身手。如超細(xì)硼粉、高鉻酸銨粉可以作為炸藥的有效催化劑;超細(xì)銀粉可以成為乙烯氧化的催化劑;超細(xì)的鎳粉、銀粉的輕燒結(jié)效率,超細(xì)微顆粒的輕燒結(jié)體可以生成微孔過濾器,作為吸咐氫氣等氣體的儲(chǔ)藏材料,還可作為陶瓷的著色劑,用于工藝品的美術(shù)圖案中。免費(fèi)論文參考網(wǎng)。
2.2具有特殊的光學(xué)性質(zhì)
所有的金屬在超微顆粒狀態(tài)時(shí)都呈現(xiàn)為黑色。尺寸越小,顏色越黑,銀白色的鉑(白金)變成鉑黑,金屬鉻變成鉻黑。由此可見,金屬超微顆粒對(duì)光的反射率很低,通??傻陀趌%,大約幾微米厚度的膜就能起到完全消光的作用。利用這個(gè)特性可以制造高效率的光熱、光電轉(zhuǎn)換材料,以很高的效率將太陽能轉(zhuǎn)變?yōu)闊崮?、電能。另外還有可能應(yīng)用于紅外敏感元件、紅外隱身材料等。
2.3具有特殊的熱學(xué)性質(zhì)
大尺寸的固態(tài)物質(zhì)其熔點(diǎn)往往是固定的,超細(xì)微化的固態(tài)物質(zhì)其熔點(diǎn)卻顯著降低,當(dāng)顆粒小于10納米量級(jí)時(shí)尤為突出。例如,金的常規(guī)熔點(diǎn)為1064℃,當(dāng)其顆粒的尺寸減小到10納米時(shí),熔點(diǎn)會(huì)降低27℃,而減小到2納米尺寸時(shí)的熔點(diǎn)僅為327℃左右;銀的常規(guī)熔點(diǎn)為670℃,而超微銀顆粒的熔點(diǎn)可低于100℃。因此,超細(xì)銀粉制成的導(dǎo)電漿料可以進(jìn)行低溫?zé)Y(jié),此時(shí)元件的基片不必采用耐高溫的陶瓷材料,完全可采用塑料。采用超細(xì)銀粉漿料,可使片基上的膜厚均勻,覆蓋面積大,既省材料又提高質(zhì)量。
2.4具有特殊的磁學(xué)性質(zhì)
小尺寸磁性超微顆粒與大塊磁性材料有顯著不同,大塊純鐵的磁矯頑力約為80安/米,而當(dāng)顆粒尺寸減小到2×10-2微米以下時(shí),其矯頑力可增加1000倍。若進(jìn)一步減小其尺寸,大約小于6×10-3微米時(shí),其矯頑力反而降低到零,呈現(xiàn)出超順磁性。利用磁性超微顆粒具有高矯頑力的特性,已制成高儲(chǔ)存密度的磁記錄磁粉,大量應(yīng)用于磁帶、磁盤、磁卡以及磁性鑰匙等;利用超順磁性,人們已將磁性超微顆粒制成了用途廣泛的磁流體。
2.5具有特殊的力學(xué)性質(zhì)
因?yàn)榧{米材料具有較大的界面,界面的原子排列是相當(dāng)混亂的,原子在外力變形的條件下很容易遷移,因此表現(xiàn)出甚佳的韌性和一定的延展性,這樣就使納米陶瓷材料具有了新奇的力學(xué)性質(zhì)。研究表明,人的牙齒之所以具有很高的強(qiáng)度,就是因?yàn)樗怯闪姿徕}等納米材料構(gòu)成的,這也足以說明大自然是納米材料的成功制造者。納米晶粒的金屬要比傳統(tǒng)的粗晶粒金屬硬3~5倍。金屬——陶瓷復(fù)合納米材料則可在更大的范圍內(nèi)改變材料的力學(xué)性質(zhì),其應(yīng)用前景十分寬廣。
2.6宏觀量子隧道效應(yīng)
由于電子既具有粒子性又具有波動(dòng)性,因此它存在隧道效應(yīng)。近年來,人們發(fā)現(xiàn)一些宏觀物理量,如微顆粒的磁化強(qiáng)度、量子相干器件中的磁通量等亦顯示出隧道效應(yīng),稱之為宏觀的量子隧道效應(yīng)。宏觀量子隧道效應(yīng)將會(huì)是未來微電子、光電子器件的基礎(chǔ),或者說它確立了現(xiàn)存微電子器件進(jìn)一步微型化的極限,當(dāng)微電子器件進(jìn)一步微型化時(shí)必須要考慮上述的量子效應(yīng)。目前研制的量子共振隧道晶體管就是利用量子效應(yīng)制成的新一代電子器件。
3納米材料在化工生中應(yīng)用
由于納米材料的特殊結(jié)構(gòu)和特殊性能,使納米材料在化工生產(chǎn)中得到了廣泛的應(yīng)用,主要應(yīng)用在以下幾方面。
3.1橡膠改性
炭黑納米粒子加入到橡膠中后可顯著提高橡膠的強(qiáng)度、耐磨性、抗老化性,這一技術(shù)早已在橡膠工業(yè)中運(yùn)用。
納米技術(shù)在制造彩色橡膠中也發(fā)揮了獨(dú)特的作用,過去的橡膠制品一般為黑色(納米級(jí)的炭黑較易得到)。若要制造彩色橡膠可選用白色納米級(jí)的粒子(如白炭黑)作補(bǔ)強(qiáng)劑,使用納米粒子級(jí)著色劑,此時(shí)橡膠制品的性能優(yōu)異。
3.2塑料改性
3.2.1對(duì)塑料增韌作用
納米粒子添加到塑料中,對(duì)增加塑料韌性有較大的作用。用納米級(jí)SiC/Si3N4粒子經(jīng)鈦酸酯處理后填充LDPE,當(dāng)添加量為5%時(shí)沖擊強(qiáng)度最大,缺口沖擊強(qiáng)度為55.7kj/m2,是純LDPE的2倍多;斷裂伸長(zhǎng)率到625 %時(shí)仍未斷裂,為純LDPE的5倍。用納米級(jí)CaCO3,改性HDPE,當(dāng)納米級(jí)CaCO3含量為25%時(shí),沖擊強(qiáng)度達(dá)到最大值,最大沖擊強(qiáng)度為純HDPE的1.7倍,斷裂伸長(zhǎng)率在CaCO3含量為16%時(shí)最大,約為660%超過純HDPE的值。
3.2.2塑料功能化
塑料在家用電器及日用品中的應(yīng)用非常廣泛,在塑料中添加具有抗菌性的納米粒子,可使塑料具有抗菌性,且其抗菌性保持持久?,F(xiàn)已應(yīng)用此技術(shù)生產(chǎn)了抗菌冰箱,實(shí)際上就是在制造冰箱塑件時(shí),使用的塑料原料中添加了某種納米粒子,利用該納米粒子的抗菌特性,使塑料具有抗菌殺菌的功能,國(guó)內(nèi)某公司采用該項(xiàng)技術(shù)率先開發(fā)出無菌塑料餐具、無菌塑料撲克等產(chǎn)品,受到市場(chǎng)的歡迎。
3.2.3通用塑料的工程化
通用塑料具有產(chǎn)量大、應(yīng)用廣、價(jià)格低等特點(diǎn),但其性能不如工程塑料,而工程塑料雖性能優(yōu)越,但價(jià)格較高。在通用塑料中加入納米粒子能使其達(dá)到工程塑料的性能,用納米技術(shù)對(duì)通用聚丙烯進(jìn)行改性,其性能達(dá)到了尼龍6的性能指標(biāo),而成本卻降低1/3。
3.3化學(xué)纖維改性
近年來出現(xiàn)了各種新型的功能性化學(xué)纖維,其中不少是應(yīng)用了納米技術(shù),如日本帝人公司將納米ZnO和納米SiO2混入化學(xué)纖維, 得到具有除臭及靜化空氣功能的化學(xué)纖維,這種化學(xué)纖維被廣泛用于制造長(zhǎng)期臥床病人和醫(yī)院的消臭敷料、繃帶、睡衣等;日本倉(cāng)螺公司將納米ZnO加入到聚酯纖維中,制得了防紫外線纖維, 該纖維除了具有防紫外線功能外,還具有抗菌、消毒、除臭的功能。
3.4涂料改性
在各類涂料中添加納米材料,如納米TiO2,可以制造出殺菌、防污、除臭、自潔的抗菌防污涂料,廣泛應(yīng)用于醫(yī)院和家庭內(nèi)墻涂飾??芍圃斐龇雷贤饩€涂料,應(yīng)用于需要紫外線屏蔽的場(chǎng)所,例如涂在陽傘的布料上,制成防紫外線陽傘。還可以制造出吸波隱身涂料,用于隱形飛機(jī)、隱形軍艦等國(guó)防工業(yè)領(lǐng)域及其他需要電磁波屏蔽場(chǎng)所的涂敷。在涂料中添加納米SiO2,可使涂料的抗老化性能、光潔度及強(qiáng)度成倍提高,涂料的質(zhì)量和檔次大大升級(jí),據(jù)稱,納米改性外墻涂料的耐洗刷性可由原來的1000多次提高到1萬多次,老化時(shí)間延長(zhǎng)2倍多。納米ZnO 添加到汽車金屬閃光面漆中,可制造出汽車專用變色漆。
3.5在催化方面的應(yīng)用
催化劑在許多化學(xué)化工領(lǐng)域中起著舉足輕重的作用,它可以控制反應(yīng)時(shí)間、提高反應(yīng)效率和反應(yīng)速度。大多數(shù)傳統(tǒng)的催化劑不僅催化效率低,而且其制備是憑經(jīng)驗(yàn)進(jìn)行,不僅造成生產(chǎn)原料的巨大浪費(fèi),使經(jīng)濟(jì)效益難以提高,而且對(duì)環(huán)境也造成污染。納米粒子表面活性中心多,為它作催化劑提供了必要條件。納米粒子作催化劑,可大大提高反應(yīng)效率,控制反應(yīng)速度,甚至使原來不能進(jìn)行的反應(yīng)也能進(jìn)行。納米微粒作催化劑比一般催化劑的反應(yīng)速度提高10~15倍。
3.6在其它精細(xì)化工方面的應(yīng)用
納米材料的優(yōu)越性無疑也會(huì)給精細(xì)化工帶來福音,并顯示它的獨(dú)特畦力。如在橡膠中加入納米SiO 2 ,可以提高橡膠的抗紫外輻射和紅外反射能力。免費(fèi)論文參考網(wǎng)。國(guó)外已將納米SiO 2 ,作為添加劑加入到密封膠和粘合劑中,使其密封性和粘合性都大為提高。在有機(jī)玻璃中加入Al 2 O 3 ,不僅不影響玻璃的透明度,而且還會(huì)提高玻璃的高溫沖擊韌性。一定粒度的銳鈦礦型TiO 2 具有優(yōu)良的紫外線屏蔽性能,而且質(zhì)地細(xì)膩,無毒無臭,添加在化妝品中,可使化妝品的性能得到提高。納米SiO 2 能夠強(qiáng)烈吸收太陽光中的紫外線,產(chǎn)生很強(qiáng)的光化學(xué)活性,可以用光催化降解工業(yè)廢水中的有機(jī)污染物,具有除凈度高,無二次污染,適用性廣泛等優(yōu)點(diǎn),在環(huán)保水處理中有著很好的應(yīng)用前景。在環(huán)境科學(xué)領(lǐng)域還將出現(xiàn)功能獨(dú)特的納米膜。這種膜能探測(cè)到由化學(xué)和生物制劑造成的污染,并能對(duì)這些制劑進(jìn)行過濾,從而消除污染。
4結(jié)束語
篇6
關(guān)鍵詞:納米材料;納米技術(shù);特性
納米技術(shù)是上世紀(jì)出現(xiàn)的新技術(shù),在當(dāng)前社會(huì)的諸多領(lǐng)域都得到了廣泛應(yīng)用。納米材料則是納米技術(shù)的重要組成部分,從上世紀(jì)八十年代納米技術(shù)問世以來,在之后的技術(shù)發(fā)展速度比較迅速,對(duì)應(yīng)用領(lǐng)域的進(jìn)一步發(fā)展起到了積極促進(jìn)作用。通過從理論上加強(qiáng)納米技術(shù)的研究分析,對(duì)納米材料的實(shí)際應(yīng)用就能提供理論支持。
1.納米材料的特性以及制備的方法分析
1.1納米材料的特性分析
納米材料的類型是多樣化的,在使用的常規(guī)材料方面尺寸都相對(duì)比較大,材料有著宏觀陛。而納米材料則與之不同,倘若是三維方向是幾個(gè)納米長(zhǎng)的就是3D納米微晶,在二維方向則是納米級(jí)。從納米材料的制造方法角度來看,只要是人工方式進(jìn)行制造的就是人工納米材料。納米材料有著比較特殊的物理化學(xué)性能,由于其特殊性能,就在高分子材料領(lǐng)域有著廣泛應(yīng)用。從納米材料的表面效應(yīng)層面來看,主要是納米粒子表面原子數(shù)和總原子數(shù)比會(huì)隨著粒子粒徑減小從而大幅度增大。在納米粒子的表面能與表面的張力也會(huì)隨之增加,這樣就使得納米粒子的性質(zhì)有著很大變化,比較容易和其它的原子趨于穩(wěn)定,這一材料的吸附特性也比較突出。
納米材料的量子尺寸效應(yīng)特性方面,在納米粒子熱能以及電能和磁場(chǎng)能等能級(jí)比平均的能級(jí)問還要小的時(shí)候,納米材料就和宏觀物質(zhì)的特性有著不同。在量子隧道效應(yīng)特性層面,納米材料有著波粒二象性,所以就會(huì)有著隧道效應(yīng)。當(dāng)前的改性涂料使用的納米材料通常是納米半導(dǎo)材料。
除此之外,納米材料的小尺寸效應(yīng)特性也比較鮮明。在納米材料的晶體尺寸和光波的波長(zhǎng)以及傳導(dǎo)電子德布羅意波長(zhǎng)等物體特征尺寸相當(dāng)以及比其小的時(shí)候,這樣一般的固體材料就會(huì)以成立的周期性邊界條件,將破關(guān)以及聲和熱等電磁特征顯示出小尺寸的效應(yīng)。
1.2納米材料制備的方法分析
對(duì)納米材料的制備過程中,需要在方法上科學(xué)應(yīng)用。納米材料的制備的方法比較多,其中的氣相法就是比較突出的方法,是直接將氣體以及通過各種手段把物質(zhì)變成氣體,然后在氣體狀態(tài)下發(fā)生物理變化以及化學(xué)反應(yīng)。氣相法的應(yīng)用方法類型也比較多,比較重要的有化學(xué)氣相反應(yīng)法以及氣體中蒸發(fā)法等。氣體中蒸發(fā)法重要是在惰性氣體或者是在活潑氣體當(dāng)中把金屬以及合金等蒸發(fā)汽化,接著和惰性氣體進(jìn)行沖突以及冷卻等從而就形成了納米微粒。采用這一氣體冷凝法進(jìn)行制備納米微粒表面清潔以及粒徑分布相對(duì)比較窄。
通過液相法的應(yīng)用也能對(duì)納米材料進(jìn)行制備,這一方法的應(yīng)用主要是通過均相溶液作為出發(fā)點(diǎn)的,然后在各種途徑的實(shí)施下,將溶質(zhì)和溶劑進(jìn)行分離,這樣溶質(zhì)就能形成相應(yīng)形狀以及大小的微粒。對(duì)溶膠以及凝膠的方法應(yīng)用是比較多的,這是對(duì)納米材料制備的特殊性工藝,對(duì)微粉以及纖維等復(fù)合材料能加以制備。由于這一方法的應(yīng)用相對(duì)比較簡(jiǎn)單,對(duì)設(shè)備的應(yīng)用要求也比較低,在未來的應(yīng)用前景比較廣闊。
納米材料制備方法中的化學(xué)氣相凝聚法也是比較重要的方法,這是上世紀(jì)末提出的新型納米微粒合成技術(shù)。這一方法應(yīng)用中,主要是通過氣態(tài)原料在氣相當(dāng)中通過化學(xué)反應(yīng)來形成的基本粒子,以及實(shí)施冷凝合成納米微粒。當(dāng)前采用這一方法對(duì)碳化硅以及二氧化鋯等納米微粒進(jìn)行了合成。
2.納米材料的應(yīng)用領(lǐng)域
納米材料在當(dāng)前的應(yīng)用領(lǐng)域比較多樣,其中將納米材料在建筑涂料中的應(yīng)用,對(duì)建筑涂料的性能改變有著影響,能起到抗老化以及耐候性的作用效果。涂料的康老虎以及耐候性主要是涂膜受到紫外線以及陽光照射等因素影響出現(xiàn)的褪色以及變色等,在納米材料的應(yīng)用下,就能將SiO2、TiO2、ZnO、Fe2O3等都是在實(shí)際中比較優(yōu)良的抗老化劑,對(duì)建筑涂料的抗老化以及耐候性的性能提高有著積極促進(jìn)作用。
納米材料應(yīng)用到化學(xué)電源當(dāng)中也比較廣泛。納米材料其龐大表面積以及特異電催化性能在化學(xué)電源當(dāng)中的開發(fā)應(yīng)用比較突出,納米輕燒結(jié)體是電池電源的性能質(zhì)量提高的重要保障,這是將納米微粒構(gòu)成的密度只有原物質(zhì)十分之一塊狀海綿體作為化學(xué)電池以及燃料電池電極,從而能有效增加以及電解質(zhì)溶液和反應(yīng)氣體接觸表面和對(duì)效率有效提高。
例如:鎳和銀的輕燒結(jié)體作為化學(xué)電池等的電極在實(shí)際當(dāng)中已經(jīng)得到了應(yīng)用。TiO2納米微粒的燒結(jié)體作為光化學(xué)電池和鋰電池的電極得到了廣泛的研究和開發(fā)。通過納米材料和電源相結(jié)合,就能創(chuàng)造出新的電源類型,在電源的性能方面也能有效提高。
納米材料在結(jié)構(gòu)材料中的應(yīng)用也比較廣泛,納米結(jié)構(gòu)材料應(yīng)用主要是對(duì)純金屬納米材料的研究,在當(dāng)前的多元合金和納米復(fù)合材料的應(yīng)用發(fā)展也比較突出。在納米陶瓷材料的應(yīng)用上就是比較重要的,其耐高溫以及高強(qiáng)度性能在生活中的應(yīng)用比較廣泛,將其在高溫發(fā)動(dòng)機(jī)當(dāng)中加以應(yīng)用在當(dāng)前已經(jīng)得到了實(shí)現(xiàn),對(duì)燃料的熱效率增加也起到積極作用,對(duì)污染就能有效降低。
可以將納米材料作為光催化劑加以應(yīng)用。在半導(dǎo)體的光催化效應(yīng)的發(fā)揮上比較突出,在光照下價(jià)帶電子躍遷到導(dǎo)帶以及價(jià)帶空穴能將周圍環(huán)境中烴基電子奪過來,從而烴基就成為了自由基,能作為強(qiáng)氧化劑加以應(yīng)用。
篇7
21世紀(jì)是知識(shí)經(jīng)濟(jì)科技新時(shí)代,高新技術(shù)是又“高”又“新”,其科學(xué)原理似乎非常深?yuàn)W,而信息技術(shù)、生物技術(shù)更是日新月異,不斷給人驚奇。其實(shí),高新技術(shù)離我們并不遙遠(yuǎn),已經(jīng)深入滲透到社會(huì)生活的各個(gè)領(lǐng)域,正從形式到觀念上改變著我們?nèi)粘I畹囊率匙⌒?、生老病死等方方面面?/p>
納米,如今大家已不陌生,在家電、醫(yī)藥、美容等廣告中,經(jīng)常見到應(yīng)用“納米材料”防腐、防霉、保鮮、抗污染、高滲透、高效、高強(qiáng)等諸多美譽(yù)。但是,很多人對(duì)這具有“神功奇效”的納米材料、納米技術(shù),還是有點(diǎn)說不清楚、講不明白。
納米本意是一長(zhǎng)度單位,表示十億分之一米(10-9米),相當(dāng)于三四個(gè)原子的寬度,用“nm”來表示。一根直徑0.1毫米的頭發(fā),用納米來量度就是10萬納米(l000 000nm)。這樣的尺寸度量單位,顯然在我們的日常生活中是難以應(yīng)用的,沒有什么實(shí)用意義。如果你要買2米衣料,對(duì)售貨員說扯20億納米……人家一定認(rèn)為你“有病”。但是,在化學(xué)、物理學(xué)和材料科學(xué)上,納米意義重大。研究決定物質(zhì)性能的物質(zhì)結(jié)構(gòu)時(shí),在原子、分子范疇,就用得上納米。因?yàn)?,大部分的原子、分子只有幾納米到幾百納米大小。
當(dāng)我們把物質(zhì)越磨越細(xì)后,物質(zhì)開始表現(xiàn)出一些新的性能。如一般的鋁粉是燒不起來的,而超細(xì)的鋁粉,可以成為“固體燃料”;咖啡磨細(xì)到一定程度后,可以完全“溶于水”而不再有渣。從科學(xué)上講,這些新的性能與原來的性能是有聯(lián)系的,只是原來沒有充分顯示出來。鋁本來就是容易氧化的物質(zhì),但形成的三氧化二鋁薄膜會(huì)保護(hù)鋁不再氧化,所以氧化反應(yīng)不會(huì)連續(xù)而很劇烈。但超細(xì)鋁粉表面積大,同時(shí)反應(yīng)就會(huì)形成高溫積聚,高溫又破壞了氧化層使反應(yīng)連續(xù)下去,形成劇烈的放熱氧化反應(yīng)。劇烈的氧化反應(yīng)就是燃燒,可以用來熔化金屬進(jìn)行焊接,也可以用作火箭的固體燃料。而咖啡磨細(xì)后,可以在水中懸浮不沉下去,就沒有“渣”了。國(guó)外的“速溶咖啡”用中國(guó)云南、海南的咖啡豆做原料,靠著“磨細(xì)”的技術(shù)大大賺錢。而我們?yōu)槭裁茨ゲ患?xì)呢?原來靠機(jī)械物理方法磨到一定細(xì)度后,很難再細(xì)下去了,這當(dāng)中涉及很多物理、化學(xué)原因。
長(zhǎng)期以來,把物質(zhì)分離成超細(xì)顆粒的努力,一直沒有重大突破。直到20世紀(jì)80年代,科學(xué)家利用氣相沉淀等物理、化學(xué)方法,終于制取成功為數(shù)不多的l~l00nm大小的“納米級(jí)”顆粒材料。就是這為數(shù)不多的納米材料。使我們真正開始著研究“分子尺寸”的物質(zhì),并掀起了席卷天下的“納米熱潮”。研究發(fā)現(xiàn),納米材料的性能大大不同于原來的物質(zhì),如本來化學(xué)性“穩(wěn)定”的,變成非常“活潑”;本來“絕緣”不導(dǎo)電的,變成“導(dǎo)體”或“半導(dǎo)體”;本來強(qiáng)度不大、硬度不高,變得堅(jiān)韌無比,硬度甚至超過金剛鉆;納米“金屬”材料居然可以燃燒、爆炸……同樣的材料變?yōu)椤凹{米材料”后,似乎有了新的物理、化學(xué)性能,這確實(shí)令人大吃一驚。
但是,納米材料的制取并非想象中那么容易。一般的機(jī)械粉碎、研磨根本得不到“納米級(jí)”超細(xì)微顆粒,必須通過有針對(duì)性的、特殊的高技術(shù)物理、化學(xué)設(shè)施,才能制取“納米材料”。目前,納米材料還沒有成熟的規(guī)模生產(chǎn)手段,不同材料的納米級(jí)超微粒的制取仍是一道難題。目前的納米材料制造成本相當(dāng)高,用“一克千金”形容并不夸張。而要進(jìn)一步推動(dòng)納米科學(xué)和納米技術(shù)的研發(fā)深化,必須有充足的納米材料做基礎(chǔ)。所以,世界各國(guó)都把“高效制取納米材料”作為納米科技研發(fā)的重要先導(dǎo)基礎(chǔ)項(xiàng)目。
納米材料在陶瓷材料、生物工程、微電子技術(shù)、化工、醫(yī)藥等方面的研究開發(fā),最近已有了可喜的進(jìn)展。不同的納米材料,確實(shí)有許多意想不到的“神奇”性能。
篇8
關(guān)鍵詞:納米材料;物理方法;化學(xué)方法
一、引言
納米材料和納米科技被廣泛認(rèn)為是二十一世紀(jì)最重要的新型材料和科技領(lǐng)域之一。早在二十世紀(jì)60年代,英國(guó)化學(xué)家Thomas就使用“膠體”來描述懸浮液中直徑為1nm-100nm的顆粒物。1992年,《NanostructuredMaterials》正式出版,標(biāo)志著納米材料學(xué)成為一門獨(dú)立的科學(xué)。納米材料是指任意一維的尺度小于100nm的晶體、非晶體、準(zhǔn)晶體以及界面層結(jié)構(gòu)的材料。當(dāng)粒子尺寸小至納米級(jí)時(shí),其本身將具有表面與界面效應(yīng)、量子尺寸效應(yīng)、小尺寸效應(yīng)和宏觀量子隧道效應(yīng),這些效應(yīng)使得納米材料具有很多奇特的性能。自1991年Iijima首次制備了碳納米管以來,一維納米材料由于具有許多獨(dú)特的性質(zhì)和廣闊的應(yīng)用前景而引起了人們的廣泛關(guān)注。納米結(jié)構(gòu)無機(jī)材料因具有特殊的電、光、機(jī)械和熱性質(zhì)而受到人們?cè)絹碓蕉嗟闹匾?。美?guó)自1991年開始把納米技術(shù)列入“政府關(guān)鍵技術(shù)”,我國(guó)的自然科學(xué)基金等各種項(xiàng)目和研究機(jī)構(gòu)都把納米材料和納米技術(shù)列為重點(diǎn)研究項(xiàng)目。由于納米材料的形貌和尺寸對(duì)其性能有著重要的影響,因此,納米材料形貌和尺寸的控制合成是非常重要的。作為高級(jí)納米結(jié)構(gòu)材料和納米器件的基本構(gòu)成單元(Bui1dingBlocks),納米顆粒的合成與組裝是納米科技的重要組成部分和基礎(chǔ)。本文簡(jiǎn)單綜述了納米材料合成與制備中常用的幾種方法,并對(duì)其優(yōu)劣進(jìn)行了比較。
二、納米材料的合成與制備方法
2.1物理制備方法
2.1.1機(jī)械法
機(jī)械法有機(jī)械球磨法、機(jī)械粉碎法以及超重力技術(shù)。機(jī)械球磨法無需從外部供給熱能,通過球磨讓物質(zhì)使材料之間發(fā)生界面反應(yīng),使大晶粒變?yōu)樾【Я?,得到納米材料。范景蓮等采用球磨法制備了鎢基合金的納米粉末。xiao等利用金屬羰基粉高能球磨法獲得納米級(jí)的Fe-18Cr-9W合金粉末。機(jī)械粉碎法是利用各種超微粉機(jī)械粉碎和電火花爆炸等方法將原料直接粉碎成超微粉,尤其適用于制備脆性材料的超微粉。超重力技術(shù)利用超重力旋轉(zhuǎn)床高速旋轉(zhuǎn)產(chǎn)生的相當(dāng)于重力加速度上百倍的離心加速度,使相間傳質(zhì)和微觀混合得到極大的加強(qiáng),從而制備納米材料。劉建偉等以氨氣和硝酸鋅為原料,應(yīng)用超重力技術(shù)制備粒徑20nm—80nm、粒度分布均勻的ZnO納米顆粒。
2.1.2氣相法
氣相法包括蒸發(fā)冷凝法、溶液蒸發(fā)法、深度塑性變形法等。蒸發(fā)冷凝法是在真空或惰性氣體中通過電阻加熱、高頻感應(yīng)、等離子體、激光、電子束、電弧感應(yīng)等方法使原料氣化或形成等離子體并使其達(dá)到過飽和狀態(tài),然后在氣體介質(zhì)中冷凝形成高純度的納米材料。Takaki等在惰性氣體保護(hù)下,利用氣相冷凝法制備了懸浮的納米銀粉。杜芳林等制備出了銅、鉻、錳、鐵、鎳等納米粉體,粒徑在30nm—50nm范圍內(nèi)可控。魏勝用蒸發(fā)冷凝法制備了納米鋁粉。溶液蒸發(fā)法是將溶劑制成小滴后進(jìn)行快速蒸發(fā),使組分偏析最小,一般可通過噴霧干燥法、噴霧熱分解法或冷凍干燥法加以處理。深度塑性變形法是在準(zhǔn)靜態(tài)壓力的作用下,材料極大程度地發(fā)生塑性變形,而使尺寸細(xì)化到納米量級(jí)。有文獻(xiàn)報(bào)道,Φ82mm的Ge在6GPa準(zhǔn)靜壓力作用后,再經(jīng)850℃熱處理,納米結(jié)構(gòu)開始形成,材料由粒徑100nm的等軸晶組成,而溫度升至900℃時(shí),晶粒尺寸迅速增大至400nm。
2.1.3磁控濺射法與等離子體法
濺射技術(shù)是采用高能粒子撞擊靶材料表面的原子或分子,交換能量或動(dòng)量,使得靶材料表面的原子或分子從靶材料表面飛出后沉積到基片上形成納米材料。在該法中靶材料無相變,化合物的成分不易發(fā)生變化。目前,濺射技術(shù)已經(jīng)得到了較大的發(fā)展,常用的有陰極濺射、直流磁控濺射、射頻磁控濺射、離子束濺射以及電子回旋共振輔助反應(yīng)磁控濺射等技術(shù)。等離子體法是利用在惰性氣氛或反應(yīng)性氣氛中通過直流放電使氣體電離產(chǎn)生高溫等離子體,從而使原料溶液化合蒸發(fā),蒸汽達(dá)到周圍冷卻形成超微粒。等離子體溫度高,能制備難熔的金屬或化合物,產(chǎn)物純度高,在惰性氣氛中,等離子法幾乎可制備所有的金屬納米材料。
以上介紹了幾種常用的納米材料物理制備方法,這些制備方法基本不涉及復(fù)雜的化學(xué)反應(yīng),因此,在控制合成不同形貌結(jié)構(gòu)的納米材料時(shí)具有一定的局限性。
2.2化學(xué)制備方法
2.2.1溶膠—凝膠法
溶膠—凝膠法的化學(xué)過程首先是將原料分散在溶劑中,然后經(jīng)過水解反應(yīng)生成活性單體,活性單體進(jìn)行聚合,開始成為溶膠,進(jìn)而生成具有一定空間結(jié)構(gòu)的凝膠。Stephen等利用高分子加成物(由烷基金屬和含N聚合物組成)在溶液中與H2S反應(yīng),生成的ZnS顆粒粒度分布窄,且被均勻包覆于聚合物基體中,粒徑范圍可控制在2nm-5nm之間。MarcusJones等以CdO為原料,通過加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子點(diǎn),顆粒平均粒徑為3.3nm,量子產(chǎn)率(quantumyield,QY)為13.8%。
2.2.2離子液法
離子液作為一種特殊的有機(jī)溶劑,具有獨(dú)特的物理化學(xué)性質(zhì),如粘度較大、離子傳導(dǎo)性較高、熱穩(wěn)定性高、低毒、流動(dòng)性好以及具有較寬的液態(tài)溫度范圍等。即使在較高的溫度下,離子液仍具有低揮發(fā)性,不易造成環(huán)境污染,是一類綠色溶劑。因此,離子液是合成不同形貌納米結(jié)構(gòu)的一種良好介質(zhì)。Jiang等以BiCl3和硫代乙酰胺為原料,在室溫下于離子液介質(zhì)中合成出了大小均勻的、尺寸為3μm—5μm的Bi2S3納米花。他們認(rèn)為溶液的pH值、反應(yīng)溫度、反應(yīng)時(shí)間等條件對(duì)納米花的形貌和晶相結(jié)構(gòu)有很重要的影響。他們證實(shí),這些納米花由直徑60nm—80nm的納米線構(gòu)成,隨老化時(shí)間的增加,這些納米線會(huì)從母花上坍塌,最終形成單根的納米線。趙榮祥等采用硝酸鉍和硫脲為先驅(qū)原料,以離子液為反應(yīng)介質(zhì),合成了單晶Bi2S3納米棒。
2.2.3溶劑熱法
溶劑熱法是指在密閉反應(yīng)器(如高壓釜)中,通過對(duì)各種溶劑組成相應(yīng)的反應(yīng)體系加熱,使反應(yīng)體系形成一個(gè)高溫高壓的環(huán)境,從而進(jìn)行實(shí)現(xiàn)納米材料的可控合成與制備的一種有效方法。Lou等采用單源前驅(qū)體Bi[S2P(OC8H17)2]3作反應(yīng)物,用溶劑熱法制得了高度均勻的正交晶系Bi2S3納米棒,且該方法適于大規(guī)模生產(chǎn)。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物為原料,甘油和水為溶劑,采用溶劑熱法在高壓釜中160℃反應(yīng)24-72h制得了長(zhǎng)達(dá)數(shù)毫米的Bi2S3納米帶。
2.2.4微乳法
微乳液制備納米粒子是近年發(fā)展起來的新興的研究領(lǐng)域,具有制得的粒子粒徑小、粒徑接近于單分散體系等優(yōu)點(diǎn)。1943年Hoar等人首次報(bào)道了將水、油、表面活性劑、助表面活性劑混合,可自發(fā)地形成一種熱力學(xué)穩(wěn)定體系,體系中的分散相由80nm-800nm的球形或圓柱形顆粒組成,并將這種體系定名微乳液。自那以后,微乳理論的應(yīng)用研究得到了迅速發(fā)展。1982年,Boutonnet等人應(yīng)用微乳法,制備出Pt、Pd等金屬納米粒子。微乳法制備納米材料,由于它獨(dú)特的工藝性能和較為簡(jiǎn)單的實(shí)驗(yàn)裝置,在實(shí)際應(yīng)用中受到了國(guó)內(nèi)外研究者的廣泛關(guān)注。
三、結(jié)論
納米材料由于具有特異的光、電、磁、催化等性能,可廣泛應(yīng)用于國(guó)防軍事和民用工業(yè)的各個(gè)領(lǐng)域。它不僅在高科技領(lǐng)域有不可替代的作用,也為傳統(tǒng)的產(chǎn)業(yè)帶來生機(jī)和活力。隨著納米材料制備技術(shù)的不斷開發(fā)及應(yīng)用范圍的拓展,工業(yè)化生產(chǎn)納米材料必將對(duì)傳統(tǒng)的化學(xué)工業(yè)和其它產(chǎn)業(yè)產(chǎn)生重大影響。但到目前為止,開發(fā)出來的產(chǎn)品較難實(shí)現(xiàn)工業(yè)化、商品化規(guī)模。主要問題是:對(duì)控制納米粒子的形狀、粒度及其分布、性能等的研究很不充分;納米材料的收集、存放,尤其是納米材料與納米科技的生物安全性更是急待解決的問題。這些問題的研究和解決將不僅加速納米材料和納米科技的應(yīng)用和開發(fā),而且將極大地豐富和發(fā)展材料科學(xué)領(lǐng)域的基礎(chǔ)理論。
參考文獻(xiàn)
[1]LuY,LiawPK,Themechanicalpropertiesofnanostructuredmaterials.JOM,2001,53(3):31.
[2]GaryStix,微觀世界里的大科學(xué),科學(xué),2001,(12):1820.
[3]張璐,姚素薇,張衛(wèi)國(guó),等.氧化鋁納米線的制備及其形成機(jī)理[J].物理化學(xué)學(xué)報(bào),2005,2(11):12541288..
[4]李英品,周曉荃,周慧靜,等.納米結(jié)構(gòu)MnO2的水熱合成、晶型及形貌演化[J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2007,28(7):12231226..
[5]LedenstoyNN,Crystallinegrowthcharacteristics,MaterProg,1998,35(24):289.
[6]王結(jié)良,梁國(guó)正,納米制備新技術(shù)研究進(jìn)展[J].河南化工,2003,(10):7l0.
篇9
Abstract: With the characteristics of large surface area, low melting point, nanomaterials has far-reaching significance in materials science. This paper expounds preparation and characteristics of nanomaterials systematically, and makes the prospects for its future application.
關(guān)鍵詞: 納米粒子;納米材料;制備方法
Key words: nanoparticles;nanomaterials;preparation method
中圖分類號(hào):TB3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-4311(2012)24-0021-02
0 引言
納米技術(shù)作為一種最具有市場(chǎng)應(yīng)用潛力的新興科學(xué)技術(shù),其在短短三十年發(fā)展迅猛,已引起一場(chǎng)技術(shù)革命。納米技術(shù)包括納米材料學(xué),納米工程學(xué)等,其中納米材料學(xué)是關(guān)鍵。納米材料是指結(jié)構(gòu)單元尺寸介于1~100nm范圍之間,其和普通材料相比,具有許多優(yōu)良的特性。而納米材料的制備是納米材料學(xué)的核心,目前,制備納米材料的方法眾多,歸納起來,無外乎兩種,即物理方法和化學(xué)方法。
1 納米粒子的特性
納米粒子是由數(shù)目較少的原子或分子形成,在熱力學(xué)上是不穩(wěn)定的,所以被視為一種新的物理狀態(tài),是介于宏觀物質(zhì)和微觀原子、分子之間的一種狀態(tài),使其具有許多奇異的特性,除正在探索的性質(zhì)以外,已經(jīng)發(fā)現(xiàn)有:
1.1 比表面和表面張力較大
平均粒徑為10-100nm的納米粒子的比表面積可達(dá)10-70m2/g,納米粒子內(nèi)部會(huì)產(chǎn)生很高的壓力,造成納米粒子內(nèi)部原子間距比塊材小,所以表面張力較大。
1.2 納米粒子的熔點(diǎn)降低
例如塊狀金的熔點(diǎn)為1063℃,但粒徑為2nm的納米時(shí)則金熔點(diǎn)降低到300℃左右,所以可在較低溫度時(shí)發(fā)生燒結(jié)和熔融。
1.3 磁性的變化
晶粒的納米化可使一些抗磁性物質(zhì)變?yōu)轫槾判裕缃饘賁b通常為抗磁性,而納米Sb則表現(xiàn)出順磁性,此外,納米化后還會(huì)出現(xiàn)各種顯著的磁效應(yīng)、巨磁阻效應(yīng)等。
1.4 物理性質(zhì)變化
金屬納米粉末一般呈黑色,而且粒徑越小,顏色越深,即納米粒子的吸收光能力越強(qiáng);當(dāng)其顆粒尺寸小于50nm時(shí),位錯(cuò)源在通常應(yīng)力下難以起作用,使得金屬?gòu)?qiáng)度增大[1]。粒徑約為5-7nm的納米粒子制得的銅和鈀納米固體的硬度和彈性強(qiáng)度比常規(guī)金屬樣品高出5倍。
1.5 納米離子的導(dǎo)電性增加
研究表明,納米CaF2的離子電導(dǎo)率比多晶粉末CaF2高約一個(gè)數(shù)量級(jí),比單晶CaF2高約兩個(gè)數(shù)量級(jí)。
此外,納米粒子還具有化學(xué)反應(yīng)性能高、比熱容大,在低溫下有良好的熱導(dǎo)性,作為催化劑效率高、隨著粒度減小,超導(dǎo)臨界溫度逐漸提高等特點(diǎn)。
2 納米粒子的制備方法
制備納米粒子的方法歸納起來,無外乎兩種方法,即物理制備方法和化學(xué)制備方法,兩種方法的本質(zhì)都是將塊狀的或者較大顆粒的物質(zhì)變成顆粒更小的納米級(jí)的粒子。
2.1 物理制備方法
根據(jù)物理化學(xué)原理,物質(zhì)的分散度越高,即顆粒越小,其表面吉布斯自由能會(huì)越高,此時(shí),形成的顆粒會(huì)自發(fā)聚集變大,也就是說粉碎到一定程度時(shí)就不能再被粉碎。我們可以通過一些物理方法,比如表面活性劑、改變溫度壓強(qiáng)等方法來制備納米粒子。
2.1.1 低溫低壓制備方法 對(duì)于由固體物質(zhì)來制備納米粒子,可以在低溫下進(jìn)行粉碎,可采用液氮或者干冰來進(jìn)行溫度控制,這種方法缺點(diǎn):在制備過程中容易引入雜質(zhì),并且粒子的顆粒大小難以控制,并且生成的粒子容易發(fā)生聚集。
對(duì)于由液體物質(zhì)來制備納米粒子,可以在低溫低壓下進(jìn)行,先將溶液霧化冷凍,再在低溫低壓下干燥,然后將溶劑生化后得到納米級(jí)尺度粒子。這種方法優(yōu)點(diǎn)是操作簡(jiǎn)單,可制的10-50nm的微粒;缺點(diǎn)是一旦形成玻璃態(tài),就無法生華溶劑。
2.1.2 表面活性劑作用下制備 由固體物質(zhì)來制備 用純度優(yōu)于99%的粉狀石墨和粉狀金屬按原子比為1:1的混合粉末,在氬氣保護(hù)下置于容積為120mL的鋼罐中,選用WC球(ф12mm),球與粉的質(zhì)量比為18:1,然后在行星或球磨機(jī)上高能球磨,經(jīng)過110h后得到粒徑約為10nm的納米粒子。加入表面活性劑作為助磨劑,可以獲得力度更小的納米粒子。該法可以制備高熔點(diǎn)金屬碳化物TaC,NbC等。再如,可將顆粒較小的粉末狀物質(zhì)裝入不銹鋼容器內(nèi),再加入乙醇作為表面活性劑,用氮?dú)庾鳛楸Wo(hù)氣體,在45atm下進(jìn)行超聲波進(jìn)行粉碎,亦可以得到納米粒子(0.5μm)。這種方法已制備出SiC等超微粉末,操作簡(jiǎn)單可靠。
由液體物質(zhì)來制備其操作步驟主要有:將所要制備物質(zhì)原料和煤油按照1:1體積比混合,然后在高溫條件下(不低于170℃)緩緩加入乳化劑,并在攪拌過程中將溶劑蒸發(fā)掉,并且進(jìn)行干燥,最后經(jīng)分離,對(duì)無水鹽類物質(zhì)進(jìn)行加熱分解即得到納米級(jí)粉末。這種方法,目前已制備出橄欖石型超微納米粉末。
2.2 化學(xué)制備方法
篇10
【關(guān)鍵詞】納米材料;納米技術(shù);應(yīng)用
有人曾經(jīng)預(yù)測(cè)在21世紀(jì)納米技術(shù)將成為超過技術(shù)和基因技術(shù)的“決定性技術(shù)”,由此納米材料將成為最有前途的材料。世界各國(guó)相繼投入巨資進(jìn)行,美國(guó)從2000年啟動(dòng)了國(guó)家納米計(jì)劃,國(guó)際納米結(jié)構(gòu)材料會(huì)議自1992年以來每?jī)赡暾匍_一次,與納米技術(shù)有關(guān)的國(guó)際期刊也很多。
一、納米材料的特殊性質(zhì)
納米材料高度的彌散性和大量的界面為原子提供了短程擴(kuò)散途徑,導(dǎo)致了高擴(kuò)散率,它對(duì)蠕變,超塑性有顯著,并使有限固溶體的固溶性增強(qiáng)、燒結(jié)溫度降低、化學(xué)活性增大、耐腐蝕性增強(qiáng)。因此納米材料所表現(xiàn)的力、熱、聲、光、電磁等性質(zhì),往往不同于該物質(zhì)在粗晶狀態(tài)時(shí)表現(xiàn)出的性質(zhì)。與傳統(tǒng)晶體材料相比,納米材料具有高強(qiáng)度——硬度、高擴(kuò)散性、高塑性——韌性、低密度、低彈性模量、高電阻、高比熱、高熱膨脹系數(shù)、低熱導(dǎo)率、強(qiáng)軟磁性能。這些特殊性能使納米材料可廣泛地用于高力學(xué)性能環(huán)境、光熱吸收、非線性光學(xué)、磁記錄、特殊導(dǎo)體、分子篩、超微復(fù)合材料、催化劑、熱交換材料、敏感元件、燒結(jié)助劑、劑等領(lǐng)域。
(一)力學(xué)性質(zhì)
高韌、高硬、高強(qiáng)是結(jié)構(gòu)材料開發(fā)應(yīng)用的經(jīng)典主題。具有納米結(jié)構(gòu)的材料強(qiáng)度與粒徑成反比。納米材料的位錯(cuò)密度很低,位錯(cuò)滑移和增殖符合Frank-Reed模型,其臨界位錯(cuò)圈的直徑比納米晶粒粒徑還要大,增殖后位錯(cuò)塞積的平均間距一般比晶粒大,所以納迷材料中位錯(cuò)滑移和增殖不會(huì)發(fā)生,這就是納米晶強(qiáng)化效應(yīng)。金屬陶瓷作為刀具材料已有50多年,由于金屬陶瓷的混合燒結(jié)和晶粒粗大的原因其力學(xué)強(qiáng)度一直難以有大的提高。應(yīng)用納米技術(shù)制成超細(xì)或納米晶粒材料時(shí),其韌性、強(qiáng)度、硬度大幅提高,使其在難以加工材料刀具等領(lǐng)域占據(jù)了主導(dǎo)地位。使用納米技術(shù)制成的陶瓷、纖維廣泛地應(yīng)用于航空、航天、航海、石油鉆探等惡劣環(huán)境下使用。
(二)磁學(xué)性質(zhì)
當(dāng)代機(jī)硬盤系統(tǒng)的磁記錄密度超過1.55Gb/cm2,在這情況下,感應(yīng)法讀出磁頭和普通坡莫合金磁電阻磁頭的磁致電阻效應(yīng)為3%,已不能滿足需要,而納米多層膜系統(tǒng)的巨磁電阻效應(yīng)高達(dá)50%,可以用于信息存儲(chǔ)的磁電阻讀出磁頭,具有相當(dāng)高的靈敏度和低噪音。巨磁電阻效應(yīng)的讀出磁頭可將磁盤的記錄密度提高到1.71Gb/cm2。同時(shí)納米巨磁電阻材料的磁電阻與外磁場(chǎng)間存在近似線性的關(guān)系,所以也可以用作新型的磁傳感材料。高分子復(fù)合納米材料對(duì)可見光具有良好的透射率,對(duì)可見光的吸收系數(shù)比傳統(tǒng)粗晶材料低得多,而且對(duì)紅外波段的吸收系數(shù)至少比傳統(tǒng)粗晶材料低3個(gè)數(shù)量級(jí),磁性比FeBO3和FeF3透明體至少高1個(gè)數(shù)量級(jí),從而在光磁系統(tǒng)、光磁材料中有著廣泛的應(yīng)用。
(三)電學(xué)性質(zhì)
由于晶界面上原子體積分?jǐn)?shù)增大,納米材料的電阻高于同類粗晶材料,甚至發(fā)生尺寸誘導(dǎo)金屬——絕緣體轉(zhuǎn)變(SIMIT)。利用納米粒子的隧道量子效應(yīng)和庫(kù)侖堵塞效應(yīng)制成的納米器件具有超高速、超容量、超微型低能耗的特點(diǎn),有可能在不久的將來全面取代目前的常規(guī)半導(dǎo)體器件。2001年用碳納米管制成的納米晶體管,表現(xiàn)出很好的晶體三極管放大特性。并根據(jù)低溫下碳納米管的三極管放大特性,成功研制出了室溫下的單電子晶體管。隨著單電子晶體管研究的深入進(jìn)展,已經(jīng)成功研制出由碳納米管組成的邏輯電路。
(四)熱學(xué)性質(zhì)
納米材料的比熱和熱膨脹系數(shù)都大于同類粗晶材料和非晶體材料的值,這是由于界面原子排列較為混亂、原子密度低、界面原子耦合作用變?nèi)醯慕Y(jié)果。因此在儲(chǔ)熱材料、納米復(fù)合材料的機(jī)械耦合性能應(yīng)用方面有其廣泛的應(yīng)用前景。例如Cr-Cr2O3顆粒膜對(duì)太陽光有強(qiáng)烈的吸收作用,從而有效地將太陽光能轉(zhuǎn)換為熱能。
(五)光學(xué)性質(zhì)
納米粒子的粒徑遠(yuǎn)小于光波波長(zhǎng)。與入射光有交互作用,光透性可以通過控制粒徑和氣孔率而加以精確控制,在光感應(yīng)和光過濾中廣泛。由于量子尺寸效應(yīng),納米半導(dǎo)體微粒的吸收光譜一般存在藍(lán)移現(xiàn)象,其光吸收率很大,所以可應(yīng)用于紅外線感測(cè)器材料。
(六)生物醫(yī)藥材料應(yīng)用
納米粒子比紅血細(xì)胞(6~9nm)小得多,可以在血液中自由運(yùn)動(dòng),如果利用納米粒子研制成機(jī)器人,注入人體血管內(nèi),就可以對(duì)人體進(jìn)行全身健康檢查和,疏通腦血管中的血栓,清除心臟動(dòng)脈脂肪沉積物等,還可吞噬病毒,殺死癌細(xì)胞。在醫(yī)藥方面,可在納米材料的尺寸上直接利用原子、分子的排布制造具有特定功能的藥品納米材料粒子將使藥物在人體內(nèi)的輸運(yùn)更加方便。
二、納米技術(shù)現(xiàn)狀
在歐美日上已有多家廠商相繼將納米粉末和納米元件產(chǎn)業(yè)化,我國(guó)也在國(guó)際環(huán)境下創(chuàng)立了一(下轉(zhuǎn)第37頁)(上接第26頁)些影響不大的納米材料開發(fā)公司。美國(guó)2001年通過了“國(guó)家納米技術(shù)啟動(dòng)計(jì)劃(NationalTechnologyInitiative)”,年度撥款已達(dá)到5億美圓以上。美國(guó)戰(zhàn)略的重點(diǎn)已由過去的國(guó)家通信基礎(chǔ)構(gòu)想轉(zhuǎn)向國(guó)家納米技術(shù)計(jì)劃。布什總統(tǒng)上臺(tái)后,制定了新的納米技術(shù)的戰(zhàn)略規(guī)劃目標(biāo):到2010年在全國(guó)培養(yǎng)80萬名納米技術(shù)人才,納米技術(shù)創(chuàng)造的GDP要達(dá)到萬億美圓以上,并由此提供200萬個(gè)就業(yè)崗位。2003年,在美國(guó)政府支持下,英特爾、蕙普、IBM及康柏4家公司正式成立中心,在硅谷建立了世界上第一條納米芯生產(chǎn)線。許多大學(xué)也相繼建立了一系列納米技術(shù)研究中心。在商業(yè)上,納米技術(shù)已經(jīng)被用于陶瓷、金屬、聚合物的納米粒子、納米結(jié)構(gòu)合金、著色劑與化妝品、元件等的制備。
目前美國(guó)在納米合成、納米裝置精密加工、納米生物技術(shù)、納米基礎(chǔ)等多方面處于世界領(lǐng)先地位。歐洲在涂層和新儀器應(yīng)用方面處于世界領(lǐng)先地位。早在“尤里卡計(jì)劃”中就將納米技術(shù)研究納入其中,現(xiàn)在又將納米技術(shù)列入歐盟2002——2006科研框架計(jì)劃。日本在納米設(shè)備和強(qiáng)化納米結(jié)構(gòu)領(lǐng)域處于世界先進(jìn)地位。日本政府把納米技術(shù)列入國(guó)家科技發(fā)展戰(zhàn)略4大重點(diǎn)領(lǐng)域,加大預(yù)算投入,制定了宏偉而嚴(yán)密的“納米技術(shù)發(fā)展計(jì)劃”。日本的各個(gè)大學(xué)、研究機(jī)構(gòu)和界也紛紛以各種方式投入到納米技術(shù)開發(fā)大潮中來。
在上世紀(jì)80年代,將納米材料列入國(guó)家“863計(jì)劃”、和國(guó)家基金項(xiàng)目,投資上億元用于有關(guān)納米材料和技術(shù)的研究項(xiàng)目。但我國(guó)的納米技術(shù)水平與歐美等國(guó)的差距很大。目前我國(guó)有50多個(gè)大學(xué)20多家研究機(jī)構(gòu)和300多所企業(yè)從事納米研究,已經(jīng)建立了10多條納米技術(shù)生產(chǎn)線,以納米技術(shù)注冊(cè)的公司100多個(gè),主要生產(chǎn)超細(xì)納米粉末、生物化學(xué)納米粉末等初級(jí)產(chǎn)品。
三、前景展望
經(jīng)過幾十年對(duì)納米技術(shù)的研究探索,現(xiàn)在科學(xué)家已經(jīng)能夠在實(shí)驗(yàn)室操縱單個(gè)原子,納米技術(shù)有了飛躍式的發(fā)展。納米技術(shù)的應(yīng)用研究正在半導(dǎo)體芯片、癌癥診斷、光學(xué)新材料和生物分子追蹤4大領(lǐng)域高速發(fā)展。可以預(yù)測(cè):不久的將來納米金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)管、平面顯示用發(fā)光納米粒子與納米復(fù)合物、納米光子晶體將應(yīng)運(yùn)而生;用于集成電路的單電子晶體管、記憶及邏輯元件、分子化學(xué)組裝機(jī)將投入應(yīng)用;分子、原子簇的控制和自組裝、量子邏輯器件、分子電子器件、納米機(jī)器人、集成生物化學(xué)傳感器等將被研究制造出來。
納米技術(shù)目前從整體上看雖然仍然處于實(shí)驗(yàn)研究和小規(guī)模生產(chǎn)階段,但從的角度看:上世紀(jì)70年代重視微米科技的國(guó)家如今都已成為發(fā)達(dá)國(guó)家。當(dāng)今重視發(fā)展納米技術(shù)的國(guó)家很可能在21世紀(jì)成為先進(jìn)國(guó)家。納米技術(shù)對(duì)我們既是嚴(yán)峻的挑戰(zhàn),又是難得的機(jī)遇。必須加倍重視納米技術(shù)和納米基礎(chǔ)理論的研究,為我國(guó)在21世紀(jì)實(shí)現(xiàn)騰飛奠定堅(jiān)實(shí)的基礎(chǔ)。整個(gè)人類將因納米技術(shù)的發(fā)展和商業(yè)化而產(chǎn)生根本性的變革。
熱門標(biāo)簽
金屬材料論文 金屬礦 金屬切削機(jī)床 金屬冶煉技術(shù) 金屬加工 金屬材料 金屬 金屬元素 心理培訓(xùn) 人文科學(xué)概論
相關(guān)文章
1環(huán)境監(jiān)測(cè)與重金屬污染控制對(duì)策
2鄉(xiāng)鎮(zhèn)金屬非金屬礦山安全管理對(duì)策