小學(xué)數(shù)學(xué)建模思想的滲透

時(shí)間:2022-06-11 11:06:00

導(dǎo)語(yǔ):小學(xué)數(shù)學(xué)建模思想的滲透一文來(lái)源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。

小學(xué)數(shù)學(xué)建模思想的滲透

一、小學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的現(xiàn)狀分析

1.數(shù)學(xué)建模教學(xué)中目標(biāo)定位偏頗。應(yīng)試教育的影響使得一些教師在教學(xué)課程的教學(xué)設(shè)計(jì)上特別重視基礎(chǔ)知識(shí)和基本技能的培養(yǎng)和訓(xùn)練,學(xué)生在學(xué)習(xí)的過(guò)程中也多是簡(jiǎn)單的接受知識(shí),或者是一些形式上的數(shù)學(xué)探究,對(duì)于數(shù)學(xué)思想方法的理解也僅僅是接受為主。在這種情況下,數(shù)學(xué)建模的思想的滲透就很容易被一些教師所忽略,沒(méi)有將數(shù)學(xué)建模的納入到正常的教學(xué)計(jì)劃之中,進(jìn)而導(dǎo)致學(xué)生接受數(shù)學(xué)建模的學(xué)習(xí)機(jī)會(huì)較少,數(shù)學(xué)建模的學(xué)習(xí)效率不高,數(shù)學(xué)建模沒(méi)有得到應(yīng)有的重視。

2.數(shù)學(xué)建模教學(xué)中形式大于了實(shí)質(zhì)。一些數(shù)學(xué)老師在進(jìn)行教學(xué)的過(guò)程中雖然注重了數(shù)字知識(shí)和日常生活的聯(lián)系,但大多是為了聯(lián)系而聯(lián)系,沒(méi)有達(dá)到數(shù)學(xué)教學(xué)應(yīng)用的效果。在教學(xué)中還有一些老師非常的注重算法多樣化的操作,簡(jiǎn)單的認(rèn)為多樣化的程度越高越好,缺少對(duì)于多樣化算法進(jìn)行優(yōu)化的過(guò)程,這種情況使得在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中很難形成算法的一般模型,不利于數(shù)學(xué)建模思想在教學(xué)中的滲透。

3.考核和評(píng)價(jià)過(guò)于單一。在小學(xué)數(shù)學(xué)學(xué)生考試的評(píng)價(jià)過(guò)程中,很難看到教師以培養(yǎng)學(xué)生建模意識(shí)和檢測(cè)學(xué)生建模為目的的數(shù)學(xué)題目,那些有著一定建模思維的學(xué)生很難得到應(yīng)有的鼓勵(lì)和啟發(fā),這在一定程度上影響了學(xué)生開(kāi)展數(shù)學(xué)建模的興趣。小學(xué)生的特點(diǎn)是特別注重教師對(duì)于自己的評(píng)價(jià),教師在教學(xué)中改變傳統(tǒng)的評(píng)價(jià)方式,對(duì)在數(shù)學(xué)建模方面表現(xiàn)突出的學(xué)生進(jìn)行鼓勵(lì),與時(shí)俱進(jìn)的對(duì)建模思維進(jìn)行考察,這對(duì)于促進(jìn)學(xué)生建模思想的形成有著很好的幫助。小學(xué)數(shù)學(xué)建模思想滲透的不夠主要在于教師在教學(xué)中教學(xué)觀念和教學(xué)方法還比較落后,對(duì)于數(shù)學(xué)建模的重要性認(rèn)識(shí)不足,沒(méi)有從學(xué)生今后更高階段的數(shù)學(xué)學(xué)習(xí)和學(xué)生綜合素質(zhì)的提升方面進(jìn)行問(wèn)題的考慮。

二、小學(xué)數(shù)學(xué)滲透建模思想的主要實(shí)施策略

1.從感知積累表象。建立數(shù)學(xué)模型的前提就是要充分的感知和模型有關(guān)的對(duì)象,從很多具有共同特點(diǎn)的同一類的事物中,抽象出這一類事物的具體特征和內(nèi)在的關(guān)聯(lián),不斷地對(duì)表象的經(jīng)驗(yàn)積累是進(jìn)行數(shù)學(xué)建模最為重要的基礎(chǔ)。小學(xué)的數(shù)學(xué)代課老師在進(jìn)行建模的過(guò)程中,首先要進(jìn)行情景的創(chuàng)設(shè),使得學(xué)生在學(xué)習(xí)中能夠積累多種多樣的感性材料,通過(guò)這些材料的歸類和分析,了解這一類事物的具體特征和相互之間的關(guān)系,為開(kāi)展準(zhǔn)確的建模提供必要的準(zhǔn)備。例如,在學(xué)習(xí)分?jǐn)?shù)的初步認(rèn)識(shí)的時(shí)候,教師就可以讓學(xué)生觀察平均分割的蘋果、不同水杯的水、使用一半的鉛筆等,讓學(xué)生從不同的角度進(jìn)行分析,而不僅僅是局限于長(zhǎng)度方面的思考,同時(shí)還可以從面積、體積、重量等角度去分析部分和整體之間的關(guān)系。對(duì)表象充分的積累有助于學(xué)生形成比較豐富的感性認(rèn)識(shí),幫助學(xué)生完成分?jǐn)?shù)這一數(shù)學(xué)模型的建構(gòu),提升學(xué)生對(duì)于數(shù)學(xué)知識(shí)的理解,促進(jìn)學(xué)生自身綜合素質(zhì)的提升。

2.對(duì)事物的本質(zhì)進(jìn)行抽象,完成模型構(gòu)建。小學(xué)數(shù)學(xué)建模思想的滲透,并不是說(shuō)建模思想和數(shù)學(xué)的學(xué)習(xí)完全割裂,相反,建模思想和數(shù)學(xué)的本質(zhì)屬性之間聯(lián)系十分的緊密,兩者之間是相互依存的有機(jī)整體,有著十分密切的關(guān)系。所以在數(shù)學(xué)教學(xué)中,教師一方面要利用學(xué)生已經(jīng)掌握的一些數(shù)學(xué)知識(shí)開(kāi)展教學(xué),同時(shí)還要幫助學(xué)生對(duì)數(shù)學(xué)模型的本質(zhì)進(jìn)行理解,將生活中的數(shù)學(xué)提升到學(xué)科數(shù)學(xué)的層面,以便更好地幫助學(xué)生完成數(shù)學(xué)模型的建構(gòu),促進(jìn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,這是小學(xué)數(shù)學(xué)老師所應(yīng)當(dāng)面對(duì)的重要數(shù)學(xué)教學(xué)任務(wù)。例如,在學(xué)習(xí)“平行和相交”這一部分內(nèi)容的時(shí)候,如果教師僅僅讓學(xué)生感知五線譜、火車道、高速路、雙杠等一些素材,而沒(méi)有透過(guò)這些現(xiàn)象提煉出一定的數(shù)學(xué)模型,那就喪失了數(shù)學(xué)學(xué)習(xí)的意義。教師在教學(xué)中可以讓學(xué)生提出問(wèn)題,為什么平行的直線不能相交?然后再讓學(xué)生親自動(dòng)手學(xué)習(xí),量一量平行線之間垂線段的距離。經(jīng)過(guò)這些理解和分析,學(xué)生就會(huì)構(gòu)建起一定的數(shù)學(xué)模型,將本質(zhì)從眾多的現(xiàn)象中提煉出來(lái),使得平行線能夠在學(xué)生思想中完成從物理模型到數(shù)學(xué)模型的構(gòu)建的過(guò)程。

3.優(yōu)化建模的過(guò)程。在數(shù)學(xué)的學(xué)習(xí)過(guò)程中,不管是數(shù)學(xué)規(guī)律的發(fā)現(xiàn),還是數(shù)學(xué)概念的建立,最為核心的是要建立一定的數(shù)學(xué)思維方法,這是數(shù)學(xué)建模在小學(xué)數(shù)學(xué)中進(jìn)行滲透的原因所在,學(xué)生通過(guò)進(jìn)行一定的數(shù)學(xué)建模的方法的學(xué)習(xí)和應(yīng)用,久而久之會(huì)形成有利于自身學(xué)習(xí)的數(shù)學(xué)思維方法,提升自身數(shù)學(xué)學(xué)習(xí)的效果。例如,在學(xué)習(xí)圓柱的體積的教學(xué)過(guò)程中,在進(jìn)行體積公式構(gòu)建時(shí)就要突出數(shù)學(xué)思想的建模過(guò)程,首先可以利用轉(zhuǎn)化的思想,將之前的知識(shí)聯(lián)系起來(lái),將未知變成已知。另外就是利用極限的思想,圓柱體積的獲得方法和將一個(gè)圓形轉(zhuǎn)化為一個(gè)長(zhǎng)方形的方法類似。在小學(xué)數(shù)學(xué)的教學(xué)過(guò)程中,重視教學(xué)方法的提煉和構(gòu)建,能夠有效促進(jìn)數(shù)學(xué)模型的建構(gòu),進(jìn)而提升學(xué)生在數(shù)學(xué)模型的構(gòu)建過(guò)程中的理性高度。

4.對(duì)模型的外延進(jìn)行拓展。人們認(rèn)識(shí)事物總是從感性認(rèn)識(shí)到理性認(rèn)識(shí)再到感性認(rèn)識(shí),是一個(gè)螺旋上升的過(guò)程。數(shù)學(xué)學(xué)習(xí)過(guò)程中從感性材料抽象提煉出來(lái)的數(shù)學(xué)模型,并不是學(xué)生數(shù)學(xué)學(xué)習(xí)的終點(diǎn)。教師在教學(xué)中還應(yīng)該將數(shù)學(xué)模型還原到數(shù)學(xué)現(xiàn)實(shí)之中,使得通過(guò)學(xué)習(xí)所構(gòu)建的數(shù)學(xué)模型能夠不斷的進(jìn)行提升和擴(kuò)充。例如,在小學(xué)數(shù)學(xué)學(xué)習(xí)過(guò)程中經(jīng)常會(huì)遇到的“雞兔同籠”的模型,這是通過(guò)“雞”和“兔”來(lái)進(jìn)行數(shù)學(xué)問(wèn)題的研究,建立了一定的數(shù)學(xué)模型,但是在數(shù)學(xué)模型的建立過(guò)程中不可能將所有的同類事物都進(jìn)行列舉。老師在教學(xué)中可以帶領(lǐng)學(xué)生對(duì)該模型進(jìn)行不斷的擴(kuò)展和考察,分析在情境的數(shù)據(jù)發(fā)生了變化的時(shí)候該模型是否還穩(wěn)定。老師可以給出以下的問(wèn)題讓學(xué)生進(jìn)行思考:有26位學(xué)生正在9張桌子上進(jìn)行兵乓球的單打和雙打的比賽,那么進(jìn)行雙打和單打的各有幾張桌子?這些問(wèn)題的提出和演練可以使得模型得到進(jìn)一步的拓展和豐富。伴隨著社會(huì)的不斷發(fā)展,對(duì)于數(shù)學(xué)的認(rèn)識(shí)和理解也在不斷的變化,從開(kāi)始關(guān)于數(shù)的科學(xué)到現(xiàn)在關(guān)于模型的科學(xué)的認(rèn)識(shí)經(jīng)歷了漫長(zhǎng)的歷程。小學(xué)老師在開(kāi)展數(shù)學(xué)教學(xué)的過(guò)程中,要順應(yīng)發(fā)展的要求,對(duì)學(xué)生進(jìn)行數(shù)學(xué)建模思想的滲透,對(duì)學(xué)生建模的能力和意識(shí)進(jìn)行培養(yǎng),促進(jìn)學(xué)生綜合素質(zhì)的提升。

作者:黃勇工作單位:重慶開(kāi)縣敦好鎮(zhèn)正壩中心小學(xué)