開關(guān)電源與設(shè)計方案范文

時間:2023-12-14 17:46:23

導(dǎo)語:如何才能寫好一篇開關(guān)電源與設(shè)計方案,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。

篇1

常規(guī)設(shè)計方案中勵磁裝置的調(diào)節(jié)器等工作電源采用廠用電與直流電分別給開關(guān)電源供電,然后在開關(guān)電源輸出側(cè)隔離,通過二極管阻塞反向電壓,再將同電壓等級的輸出電源并接在一起給調(diào)節(jié)器或其它設(shè)備供電,其供電模式為雙電源熱備,如圖1所示。這樣的設(shè)計方案雖然簡單,有較高的可靠性,但是存在以下缺點:沒有相應(yīng)聲光指示工作電源狀態(tài)。四個開關(guān)電源中如有損壞時或直流系統(tǒng)或廠用電中的某一路供電出現(xiàn)故障后,這時勵磁裝置雖然能正常工作,但此時運行人員可能在較長時間不能及時發(fā)現(xiàn)問題。若此時再發(fā)生供電系統(tǒng)異?;蜷_關(guān)電源損壞,就會造成發(fā)電機失磁的重大故障。工作電源出現(xiàn)故障后無法準(zhǔn)確判斷出是哪路電源出了故障,就無法在不停機的狀態(tài)下更換開關(guān)電源,需停機檢修更換,這樣會對用戶造成不必要的經(jīng)濟損失。

2改進后的設(shè)計方案

2.1系統(tǒng)原理

針對現(xiàn)有的設(shè)計方案暴露出的缺點,我們在2013年4月提出設(shè)計變更方案,進行了大量的試驗工作,對新增的電源監(jiān)測裝置進行了長時間的烤機,最終于2013年6月完成成品。

2.2電源監(jiān)測裝置原理

開送電源監(jiān)測裝置的電路結(jié)構(gòu)如圖3。第一分壓電路9包括串聯(lián)連接的電阻R1和電阻R2,其的一端與基準(zhǔn)電壓(例如+9V)連接,另一端接地,電阻R1和電阻R2的節(jié)點作為輸出端輸出第一參考電壓至運放IC1D和運放IC1B的反相輸入端。所述第二分壓電路10包括串聯(lián)連接的電阻R4和電阻R5,第二分壓電路10的一端與基準(zhǔn)電壓(例如+9V)連接,另一端接地,電阻R4和電阻R5的節(jié)點作為輸出端輸出第二考電壓至運放IC1C和運放IC1A的同相輸入端。運放IC1D的同相輸入端和運放IC1C的反相輸入端分別通過電阻R3接入電源1,運放IC1B的同相輸入端和運放IC1A的反相輸入端分別通過電阻R6接入電源2。運放IC1D、運放IC1C、運放IC1B、運放IC1A的輸出端分別通過電阻R11、電阻R12、電阻R13、電阻R14與發(fā)光二極管LED1、LED2、LED3、LED4的陽極連接。這樣,由運放IC1C、IC1D等元件組成具有遲滯特性的電壓比較電路,檢測+5V(Ⅰ)(即電源1)電壓是否正常,假設(shè)+5V電壓升高至+5.5V或降低至+4.7V電壓時,運放IC1C或IC1D輸出高電平,驅(qū)動發(fā)光二極管LED1、LED2發(fā)出警示。+5V(Ⅱ)(電源2)的電壓檢測由運放IC1A、IC1B等元件組成,原理同上。本裝置還包括分別與電源3、電源4、電源5、電源6、電源7、電源8連接的光耦OC1A、OC1B、OC2A、OC2B、OC3A、OC3B,每一光耦的輸入端與待測電源連接,光耦接收端的集電極接上拉電阻,發(fā)射極接地,所述上拉電阻的一端接直流電壓,另一端與發(fā)光二極管的陽極連接。以光耦OC1A為例,光耦OC1A的輸入端通過電阻R23接入電源3,光耦OC1A接收端的集電極通過上拉電阻R15接入直流電壓(+12V),光耦OC1A接收端的發(fā)電極接地,上拉電阻R15的另一端與發(fā)光二極管LED5的陽極連接。在上述電源3的電壓正常時,光耦OC1A的集電極電平是零,若電源3的電壓消失時,光耦OC1A的集電極輸出高電平,發(fā)光二極管LED5亦被點亮。其它光耦的連接方式和工作原理與前述相同,在此不再贅述。發(fā)光二極管LED1~LED10的陰極與開關(guān)管T1的控制端連接,開關(guān)管T1的第一端通過繼電器J1線圈接入直流電壓(+12V),二極管D5連接在線圈的兩端,開關(guān)管T1的第二端接地。開關(guān)管T1為NPN三極管。由發(fā)光二極管LED1~LED10構(gòu)成或門電路,任何一個發(fā)光二極管被點亮后其陰極均可輸出高電平,開關(guān)管T1的控制端(即NPN三極管的基極)在得到高電平后導(dǎo)通,繼電器J1動作,其動作接點輸出故障信號。開關(guān)管T1的第一端與直流電壓之間還連接一發(fā)光二極管LED11,用于總故障報警。電源檢測單元內(nèi)部工作電源:由雙路+24V(Ⅰ)、+24V(Ⅱ)經(jīng)D3、D4隔離后并聯(lián)給DC-DC直流變換器P1供電,P1輸出+12V電壓。電路中工作電源的+12V亦由+12V(Ⅰ)、+12V(Ⅱ)經(jīng)D1、D2隔離后并聯(lián)提供。這樣整個電路的工作電源就有四路電源共同供電,可提高本電路工作的可靠性。

2.3新方案實施后的效果

通過大量的模擬故障試驗與長時間烤機試驗后,證明該電源設(shè)計方案穩(wěn)定可靠,并且在任意開關(guān)電源不正常時均可對外發(fā)出信號警示,由此得出新方案比傳統(tǒng)方案更智能化、安全化,能使現(xiàn)場調(diào)試人員及運行人員及時發(fā)現(xiàn)故障問題,從而及時消除其故障,避免造成更大的損失。

3結(jié)論

篇2

1 引言

在發(fā)電廠和變電所中,為了給控制、信號、保護、自動裝置、事故照明和交流不停電電源等裝置供電,一般都要求有可靠的直流電源。為此,發(fā)電廠和110kV以上的變電所通常用蓄電池作為直流電源,但要求上述電源具有高度的可靠性和穩(wěn)定性,并且其電源容量和電壓能在最嚴(yán)重的事故情況下保證用電設(shè)備的可靠工作。

另外,目前由于半導(dǎo)體功率器件、磁性材料等方面的原因,單個開關(guān)電源模塊的最大輸出功率只有上千瓦,而實際應(yīng)用中往往需用幾十千瓦甚至幾百千瓦以上的開關(guān)電源為系統(tǒng)供電,因此,要通過電源模塊的并聯(lián)運行來實現(xiàn)。大功率電源系統(tǒng)需要采用若干臺開關(guān)電源并聯(lián)的形式,以滿足負(fù)載的功率要求。在并聯(lián)系統(tǒng)中,每個變換器應(yīng)處理較小的功率以降低應(yīng)力,還應(yīng)采用冗余技術(shù)來提高系統(tǒng)的可靠性。電源并聯(lián)運行是電源產(chǎn)品模塊化、大容量化的一個有效方法,同時也是實現(xiàn)組合大功率電源系統(tǒng)的關(guān)鍵。

2 常用的均流方法

由于大功率電源負(fù)載需求的增加以及分布式電源系統(tǒng)的發(fā)展,開關(guān)電源并聯(lián)技術(shù)的重要性也日益增加。但是并聯(lián)的開關(guān)變換器在模塊間通常需要采用均流(Current sharing)措施。它是實現(xiàn)大功率電源系統(tǒng)的關(guān)鍵,其目的在于保證模塊間電源應(yīng)力和熱應(yīng)力的均勻分配,防止一臺或多臺模塊運行在電流極限(限流)狀態(tài)。因為并聯(lián)運行的各個模塊特性并不一致,外特性好(電壓調(diào)整率?。┑哪K可承擔(dān)更多的電流,甚至過載,從而使某些外特性較差的模塊運行于輕載狀態(tài),甚至基本上是空載運行。其結(jié)果必然加大了分擔(dān)電流多的模塊的熱應(yīng)力,從而降低了可靠性。

    開關(guān)電源并聯(lián)系統(tǒng)常用的均流方法有:

(1)輸出阻抗法

(2)主從設(shè)置法

(3)按平均電流值自動均流法

(4)最大電流自動均流法(又叫自主均流法)。

直流模塊并聯(lián)的方案很多,但用于電力操作電源,都存在著這樣或者那樣的缺陷,其主要表現(xiàn)在:輸出阻抗法的均流精度太低;主從設(shè)置法和平均電流法都無法實現(xiàn)冗余技術(shù),因而并聯(lián)電源模塊系統(tǒng)的可靠性得不到很好的保證;外加均流控制器法使系統(tǒng)變得過于復(fù)雜,不利于把這一技術(shù)轉(zhuǎn)化成實際的產(chǎn)品。而自主均流法以其均流精度高,動態(tài)響應(yīng)好,可以實現(xiàn)冗余技術(shù)等特點,越來越受到產(chǎn)品開發(fā)人員的青睞。

所謂自主均流技術(shù),就是在n個并聯(lián)模塊中,以輸出電流最大的模塊為主模塊,而以其余的模塊為從模塊。由于n個并聯(lián)模塊中,一般都沒有事先人為設(shè)定哪個模塊為主模塊,而是通過電流的大小自動排序,電流大的自然成為主模塊,“自主均流法”因此而得名。

3 220/10A整流模塊

筆者設(shè)計了一個220V/40A高頻開關(guān)電源,可用于發(fā)電廠、變電所、變電站等電力控制的直流屏系統(tǒng)。該設(shè)計方案采用4個220V/10A模塊并聯(lián)來實現(xiàn)模塊間的自主均流,從而為電力系統(tǒng)提供了一種重量更輕、體積更小、效率更高、安全性更好的整流模塊實現(xiàn)方案。由于篇幅所限,本文只介紹220V/10A整流模塊的實現(xiàn)方法。

高頻開關(guān)電源性能優(yōu)于相控整流電源,它能否得到廣泛工業(yè)應(yīng)用的關(guān)鍵是其可靠性,特別是當(dāng)輸出直流電壓較高時應(yīng)能可靠工作。除元器件及生產(chǎn)工藝等因素外,開關(guān)電源的可靠性主要取決于其主電路拓?fù)浣Y(jié)構(gòu)及控制方法。在設(shè)計該電源模塊時,筆者選用了可靠性很高的三相電流型PWM整流器來完成三相功率因數(shù)校正及移相全橋諧振拓?fù)?,從而實現(xiàn)DC/DC轉(zhuǎn)換;PWM控制則采用電流型控制方法來實現(xiàn)。

3.1 三相PWM整流器

圖1所示是一種三相PWM整流器的主電路,該電路的每個橋臂均由2只IGBT和2只二極管組成。其中IGBT的驅(qū)動脈沖采用正弦PWM調(diào)制脈沖,這樣,輸入電流和輸出調(diào)制電壓Vd中就只含下式所示的諧波:

式中:Id為輸出電感中的電流;Vl為輸入線電壓有效值:P為0~60°區(qū)間內(nèi)的脈沖數(shù);M為調(diào)制系數(shù),M=Uo/Um。

PWM整流器具有輸入功率因數(shù)高,輸入電流的低次諧波電流含量少,PWM調(diào)制脈沖易實現(xiàn)以及成本低等優(yōu)點。

3.2 全橋DC/DC變換器

a.主電路拓?fù)?/p>

根據(jù)該高頻開關(guān)電源的輸出功率較大(220V、10A)且工作頻率較高(100kHz)等實際情況,筆者選用了全橋隔離式PWM變換器,圖2是其電路圖。

這種線路的優(yōu)點有二:一是主變換器只需一個原邊繞組,通過正、反向電壓即可得到正、反向磁通,副邊繞組采用全橋全波整流輸出。因此變壓器鐵芯和繞組可得到最佳利用,從而使效率密度得到提高。二是功率開關(guān)可在非常安全的情況下運行。

b.控制與保護

DC/DC變換器采用峰值電流型PWM控制,并采用自主均流法實現(xiàn)多個模塊并聯(lián)運行時的均流控制。這種均流控制方法與電源模塊數(shù)目無關(guān),且任意1個模塊發(fā)生故障或退出運行時,均不影響其它模塊的均流功能,從而真正實現(xiàn)了N+1冗余運行。

PWM脈沖寬度調(diào)制開關(guān)變換器的控制芯片采用UC3875移相專業(yè)控制芯片,該芯片主要應(yīng)用于全橋變換器電路。它有電壓型和電流型控制模式可供選擇。UC3875具有限流、輸入過壓、輸出過壓、輸入欠壓等保護功能。自動均流電路采用以最大電流自動均流法為原理的集成均流芯片UC3907,應(yīng)用UC3907可以調(diào)節(jié)電源模塊的電壓并實現(xiàn)并聯(lián)模塊間的均流。

    用于電力系統(tǒng)中的高頻開關(guān)電源可滿足的技術(shù)指標(biāo)如下:

輸入交流電壓:380V;

紋波系數(shù):≤0.5%;

電網(wǎng)頻率:50Hz;

功率因數(shù):≥0.9;

輸出直流電壓:220V;

穩(wěn)壓精度:≤0.5%;

模塊輸出電流:10A;

穩(wěn)流精度:≤0.5%;

整機輸出電流:40A

均流不平衡度:≤0.5%。

篇3

關(guān)鍵詞: 開關(guān)電源;井下電機;PWM;UC1525A

中圖分類號:F407.61 文獻標(biāo)識碼:A

井下智能鉆井工具一般采用渦輪發(fā)電機作為電源,驅(qū)動井下電機控制執(zhí)行機構(gòu)工作,實現(xiàn)井下閉環(huán)控制。渦輪發(fā)電機輸出的直流電壓受泥漿脈沖影響,波動大,未經(jīng)過開關(guān)穩(wěn)壓,導(dǎo)致電動機供電電壓不穩(wěn)定,在低速運行時不平穩(wěn),限制了電動機的低速性能,影響井下智能鉆井工具正常工作。為此,設(shè)計了一種井下DC-DC開關(guān)電源,為井下電機提供穩(wěn)定直流電壓,確保電機在低速狀態(tài)下平穩(wěn)運行,進而提高井下智能鉆井工具工作的可靠性及穩(wěn)定性。

1 總體設(shè)計方案

1.1 總體電路設(shè)計

DC-DC電源工作在井下高溫高壓環(huán)境中,且靠近發(fā)電機及力矩電機震動源。在這種環(huán)境溫度下,常規(guī)半導(dǎo)體電子器件及其組成的電路將難以可靠工作。本設(shè)計中輸入電壓高于輸出電壓,為盡可能減少所用器件以降低高溫情況下因單個器件不穩(wěn)定導(dǎo)致平均工作壽命減少的情況發(fā)生,對比其他電路結(jié)構(gòu)及功率輸出情況后,采用BUCK結(jié)構(gòu)電路。開關(guān)頻率定為3kHz,輸入直流電壓范圍:90-220V,輸出電壓:48V±2V,輸出電流:10A±2A,最大功;500W,最大外徑:100mm,工作溫度:125℃。

1.2 主電路設(shè)計

主電路中,輸出濾波電感采用鐵硅呂磁環(huán),以適應(yīng)井下振動環(huán)境,電感按臨界模式計算,為:

式中Vo為輸出電壓,Dmin為占空比最小值,Iomin為輸出電流最小值,T為周期。

單個電感采用五個77191A7鐵硅鋁磁環(huán)疊加共繞,采用了多個磁環(huán)疊加繞制后并聯(lián)使用。

輸出端濾波電容最小值滿足:

PWM控制電路核心部分采用了TI公司的UC1525A控制器,該控制器工作溫度可到125℃,滿足井下工作環(huán)境對器件的要求,輸出級為兩路圖騰柱式輸出,最大驅(qū)動電流200mA。

開關(guān)MOS管的源極是懸浮的,為形成相對的驅(qū)動電壓Ugs,采用變壓器隔離驅(qū)動,開關(guān)管采用MOSEFT,驅(qū)動功率相對較小,為加速MOSEFT快速導(dǎo)通和截止,減少開關(guān)損耗,輸出端加入耦合電容和PNP型三極管。為防止由于變壓器漏感帶來的尖峰電壓擊穿MOSFET,采用鉗位二極管。

考慮到井下高溫強振的工作環(huán)境,高頻變壓器采用德國VAC公司超微晶磁材料VITROPERM 500F(居里溫度為600℃),VAC公司的超微晶材料VITROPERM 500F用作開關(guān)電源功率變壓器,鐵損低,飽和磁通密度、磁導(dǎo)率高,可以抵抗強振動應(yīng)力。

通過以上設(shè)計與計算,得到主電路電路設(shè)計圖如圖1所示。

1.3 單端正激式輔助電源設(shè)計

為保證主電路PWM控制器穩(wěn)定工作,引入輔助電源,為開關(guān)管驅(qū)動電路及兩個PWM控制器UC1525A供電。設(shè)計參數(shù)12V/400mA,即該電路可實現(xiàn)輸入60~200VDC,輸出12V/400mA。由于主電路采用的是BUCK非隔離結(jié)構(gòu),輔助電源設(shè)計時為簡化電路采用非隔離式,如圖2所示。

輔助電源中,考慮渦輪發(fā)電機整流后的電壓容易超出三極管極限參數(shù),為保證穩(wěn)定,自啟動電路設(shè)計采用兩個三極管串聯(lián)使用, Rb1,Rb2 ,Rc1為限流電阻。C13上的電壓給輔助電源上的PWM控制器提供啟動時間,隨后當(dāng)變壓器輸出端有穩(wěn)定電壓時,將由輸出端提供能量。為防止輸出端負(fù)載對充電回路的影響,加入二極管D14。采用該種方法設(shè)計可以減少限流電阻上的損耗,保證輔助電源穩(wěn)定啟動,為主電路PWM控制器提供相對穩(wěn)定的電源做好鋪墊。

單端正激式變壓器磁芯材料采用德國VAC公司的超微晶材料磁環(huán)W373,由于輔助電源功率較小,故開關(guān)頻率可以取得稍大,開關(guān)電源頻率為50KHz。

整流濾波電路設(shè)計同BUCK結(jié)構(gòu)設(shè)計類似??刂破魍瑯硬捎肨I公司的UC1525A,與BUCK結(jié)構(gòu)設(shè)計方法相同。

1.4 開關(guān)電源熱設(shè)計

本文所設(shè)計的開關(guān)電源在井下高溫強振環(huán)境中工作,必須將發(fā)熱器件產(chǎn)生的熱量盡快發(fā)散出去,使溫升控制在允許的范圍之內(nèi),以保證可靠性??紤]工作環(huán)境特點,本設(shè)計采用散熱片為開關(guān)電源散熱。

MOS管采用IRFP460A,為盡可能好的散熱,將功率管固定于散熱片上,功率管和散熱片之間加入導(dǎo)熱系數(shù)好的散熱硅脂。

2 開關(guān)電源性能測試

為確保所設(shè)計的開關(guān)電源能夠滿足系統(tǒng)性能需求,在實驗室對樣機進行性能測試。

2.1 開關(guān)電源基本功能測試

由于前端電壓波動較大,為更好地看到效率與輸出功率及輸入電壓波動情況,采用取樣分別測量整流后電壓70V、100V、145V、195V時效率隨輸出功率變化情況。測量輸出功率時用直流檔,測量整流前端輸入功率時用有效值檔,結(jié)果如表1所示。

2.2 開關(guān)電源可靠性測試

滿額功率輸出時,溫度達到動態(tài)平衡時開關(guān)管最大溫升約為15℃(采用點溫儀測試)。電壓及紋波參數(shù)均未出現(xiàn)異常現(xiàn)象,常溫特性比較好。電源性能良好,輸出電壓誤差小于1V。經(jīng)過近800次開關(guān)通斷電,電路工作狀況未發(fā)生問題,電路輸出電壓不受影響。

長時間工作于150℃時,電路板及開關(guān)器件均正常,隨著負(fù)載功率上升,輸出電壓有下降趨勢。

3 結(jié)論

3.1 應(yīng)用于鉆井井下的開關(guān)電源,其主電路拓?fù)湫问竭x用BUCK電路,所用電子器件少,結(jié)構(gòu)形式簡單,能夠滿足井下狹小空間對于工具尺寸的要求。

3.2 開關(guān)電源控制環(huán)路設(shè)計過程中需建立開關(guān)電源完整的小信號數(shù)學(xué)模型,并對其進行開環(huán)小信號分析,確保其穩(wěn)定性。

3.3 主電路與輔助電路設(shè)計中對輸出濾波參數(shù)的計算一方面采用理論計算,一方面采用經(jīng)驗值并考慮溫度等特性,器件選型上有一定余量,保證其穩(wěn)定工作。

3.4 在高溫條件下,需要考察開關(guān)電源功率器件散熱量和環(huán)境溫度的平衡溫度點以及功率器件在電源艙不同位置時的溫升平衡點,確定功率器件最佳散熱位置布局,實現(xiàn)開關(guān)電源溫升最小化。

參考文獻

[1]PRESSMAN A L.開關(guān)電源設(shè)計[M].王志強,譯.北京:電子工業(yè)出版社.2005.

[2]周習(xí)祥,楊賽良.BUCKDC/DC 變換器最優(yōu)化設(shè)計[J].電子設(shè)計工程,2010.

[3]趙負(fù)圖.電源集成電路手冊[M].化學(xué)工業(yè)出版社,2003.

篇4

關(guān)鍵詞:建筑照明;夜景照明;電氣節(jié)能設(shè)計;電氣設(shè)備

在現(xiàn)代化社會發(fā)展過程中,城市建筑夜景照明工程得到了人們的高度重視。在夜幕降臨之后,城市建筑夜景可以為人們帶來良好的觀賞效果,城市夜景不僅是城市風(fēng)貌特征的重要體現(xiàn),也是呈現(xiàn)城市整體形象的重要平臺。城市建筑夜景照明要想獲得良好的觀賞效果,就必須開展合理的施工設(shè)計。在施工設(shè)計過程中以道路照明設(shè)計為主,需要營造綜合點、線、面等的夜間景觀,之后再對整個照明系統(tǒng)進行智能化管理。為了推動建筑行業(yè)的長遠發(fā)展,需要在城市建筑夜景設(shè)計和電氣設(shè)備優(yōu)化過程中,將節(jié)能減排作為主要發(fā)展目標(biāo),以此滿足當(dāng)前我國建筑行業(yè)的可持續(xù)發(fā)展要求。

1建筑夜景照明電氣節(jié)能設(shè)計概述

開展建筑夜景照明節(jié)能設(shè)計,實際上就是結(jié)合建筑結(jié)構(gòu)的不同形態(tài)與建筑材料的使用要求,在滿足建設(shè)單位基本需求的基礎(chǔ)上,開展建筑夜景設(shè)計。通過分析建筑夜景照明設(shè)計的主要內(nèi)容,做好電氣節(jié)能設(shè)計工作,從而滿足夜景照明電力能源供應(yīng)條件,使建筑工程具備節(jié)能特征。在建筑夜景照明電氣節(jié)能設(shè)計中,設(shè)計單位通常會采取多樣化的節(jié)能技術(shù),在建筑夜景照明設(shè)計的主體上完成電氣節(jié)能設(shè)計[1]。

2建筑夜景照明電氣節(jié)能設(shè)計優(yōu)化策略

2.1照明電氣設(shè)備優(yōu)化

2.1.1采用新型照明材質(zhì)和能源建筑夜景照明電氣設(shè)備使用的合理性直接影響電力能源的消耗程度。為確保城市建筑夜景照明電氣節(jié)能設(shè)計夠穩(wěn)定進行,必須選擇合適的照明材質(zhì),提高照明設(shè)備的使用壽命與運行質(zhì)量。通常,照明電氣設(shè)備暴露在外界空氣環(huán)境中,很容易發(fā)生腐蝕和損壞,必須選擇能夠適應(yīng)多種環(huán)境條件的材質(zhì)。在建筑夜景照明設(shè)計中,采用高效、長壽的燈具,能夠保證城市建筑夜景照明系統(tǒng)的長期、穩(wěn)定運行,從而獲得更多的經(jīng)濟效益。目前,在建筑夜景照明電氣節(jié)能設(shè)計過程中,可以采用新型材質(zhì)和能源。例如,使用太陽能發(fā)電照明材質(zhì)可以有效節(jié)省電力能源。白天,電氣設(shè)備可以收集太陽能,將其以電能的方式儲存起來,夜間為照明設(shè)備提供電源,從而獲得良好的照明效果[2]。除此之外,在設(shè)計環(huán)節(jié)中應(yīng)用節(jié)能燈具,可以減少電力能源的使用量。常用光源的技術(shù)指標(biāo)如表1所示。2.1.2選取最優(yōu)施工方案在施工過程,甲方關(guān)注的重點主要集中在以下幾個方面。(1)幕墻外立面管線、電線及燈具不影響建筑白天的視覺觀感效果。與龍骨無縫搭配組合可以解決燈具隱蔽問題;關(guān)于管線布置,燈具與燈具之間可以通過燈具自帶的防水電纜接頭連接,如圖1所示;220V的線管由主電源引出開關(guān)電源,再由開關(guān)電源引出低壓24V直流線管,通過幕墻設(shè)計公司預(yù)留的管洞與燈具連接,這樣既方便更換開關(guān)電源,也方便更換燈具。(2)燈具接地安全。LED洗墻燈燈具型材外殼為鋁型材,切面與建筑外玻璃幕墻龍骨相嚙合,燈具金屬外殼與樓體接地干線直接連接,可以確保燈具接地安全。(3)地面、樓頂景觀泛光照明。因頂層有玻璃裝飾墻,對于樓頂和地面景觀的泛光照明,可以采用金鹵燈或LED洗墻燈。通過對比兩種燈具的成本、美觀度、安裝工序、能耗情況等,決定采用哪種燈具。安裝效果對比:地面上裝金鹵燈,還需安裝混凝土底座,再以30~45°的角度投射墻面,無論車輛還是行人,都容易被燈光刺眼,影響視覺效果;使用金鹵燈需要另外裝設(shè)焊接角鐵架來固定金鹵燈,角鐵架易生銹,換成不銹鋼支架不僅額外增加施工成本,安裝時也會影響建筑美觀??紤]到施工安全及后續(xù)更換拆卸安裝方便,將LED洗墻燈安裝于玻璃裝飾墻內(nèi)側(cè),因該玻璃裝飾墻是不透明的毛玻璃,LED洗墻燈燈光投射上去會形成層次分明的暖色溫內(nèi)透效果。如果LED洗墻燈照度和光效達不到要求,需要更換成金鹵燈。能耗對比:以頂層為例(頂層和底層工程量類似),頂層金鹵燈方案共需安裝78盞50W金鹵燈,或者安裝186盞LED洗墻燈。金鹵燈安裝功率為78×50=3.9kW,LED洗墻燈的安裝功率為186×12=2.2kW。由此可知,LED燈具更節(jié)能。因為金鹵燈能耗大,可以僅在建筑四角安裝高壓鈉燈,用于投射大理石建筑立柱,其他部位均采用LED洗墻燈。根據(jù)以上分析,提出以下兩種施工方案。方案1:某大樓泛光照明選用50W金鹵燈,采取支架焊接固定安裝,頂層玻璃裝飾墻采用210W金鹵燈。方案2:某大樓泛光照明選用12WLED洗墻燈,直接利用玻璃幕墻龍骨原有結(jié)構(gòu),頂層玻璃裝飾墻采用12WLED洗墻燈。施工人員需要根據(jù)工程成本和照明節(jié)能效果選擇最終的施工方案。工程成本分為主材成本與輔材成本兩部分。其中,燈具主材成本,方案1<方案2;工程輔材施工成本,方案1>方案2。在照明能耗方面,方案1的能耗為方案2的三倍;中后期需要進行安裝和維護,方案2的安裝和維護效果優(yōu)于方案1。最終決定選用方案2。2.1.3選取合適的安裝方式(1)LED洗墻燈的安裝。玻璃幕墻立面龍骨如圖2所示,施工人員需要在玻璃幕墻龍骨架結(jié)構(gòu)中原有的空隙位置安裝燈具。燈具為大功率LED燈,色溫為3000K,光通量為3250lm,單燈功率為12W,光效為270lm/W,燈具密封防護等級為IP65。斜面為2.5mmPC蓋板,橡膠墊的主要作用是密封和防水,雨水會順斜面向下流淌,從外觀測觀看不到燈具。光源利用反射原理投射在玻璃幕墻上,不會引起眩光,不會造成光污染[3]。LED洗墻燈電源安裝于室內(nèi),由24V/220V專用直流、交流整流恒壓器供電。開關(guān)電源功率因數(shù)為0.95,燈具金屬外殼與樓體接地干線聯(lián)結(jié)。LED洗墻燈安裝剖面如圖3所示。(2)開關(guān)電源的安裝。用戶防觸電開關(guān)的額定漏電動作電流為30mA,額定漏電不動作電流為15mA。大部分室外泛光照明工程開關(guān)電源都用防水盒安裝在室外,這樣做的弊端是防水盒設(shè)計有散熱通道,開關(guān)電源工作時的熱量需要通過散熱通道散熱,如遇強對流天氣不利于室外開關(guān)電源防潮,會加大開關(guān)電源腐表1常用光源的技術(shù)指標(biāo)光源類型光效/(lm·W-1)顯色指數(shù)(Ra)色溫/K平均壽命/h應(yīng)用場合LED>100白光60~802700~6500白光或彩色>25000應(yīng)用范圍廣泛蝕損耗。將開關(guān)電源安裝于室內(nèi),能有效解決這個問題,且便于更換維護。開關(guān)電源安裝示意圖如圖4所示。

2.2配電箱位置優(yōu)化

在建筑夜景照明電氣設(shè)計中,必須精準(zhǔn)設(shè)定配電箱的位置。為了降低線路阻抗,要注意以下方面。(1)考慮到導(dǎo)線截面積和線路阻抗之間的負(fù)相關(guān)16mm圖2玻璃幕墻立面龍骨(未安裝燈具剖面)(單位:mm)1.5mm2.5mm4mm圖3LED洗墻燈安裝剖面圖關(guān)系,要重點分析導(dǎo)向長度這一要素,縮短導(dǎo)線實際供電距離。在配電系統(tǒng)設(shè)計環(huán)節(jié)中,要避免電路回供[4]。如果建筑夜景照明線路較長,必須加強保護措施,適當(dāng)增加截流量,可挑選截面積較大的導(dǎo)線,減少線路抗阻帶來的不利影響[5]。(2)考慮到電阻率和線路阻抗之間呈現(xiàn)正相關(guān)關(guān)系,要盡可能地選擇電阻率較小的線路[6]。

2.3電能計量方式優(yōu)化

在建筑夜景照明設(shè)計中,電能計量精準(zhǔn)程度直接影響照明工程的經(jīng)濟效益,必須選擇科學(xué)合理的電能計量管理系統(tǒng)進行管理[7]。電能計量管理系統(tǒng)的優(yōu)勢是能夠智能化管理照明電能表和人員信息,還可以實現(xiàn)電能表在線監(jiān)測,確保電能表的正常運行。同時,不同系統(tǒng)用戶擁有不同的使用權(quán)限,可以有效保證系統(tǒng)運行的安全性。通常,施工設(shè)計人員會在建筑內(nèi)部設(shè)置電能計量管理系統(tǒng),然后精準(zhǔn)打印電力應(yīng)用統(tǒng)計報表,查詢相關(guān)數(shù)據(jù),從而遠程監(jiān)控電能表,確保電力用戶管理和操作活動的順利進行,以信息化的方式管理照明區(qū)域的電能表[8]。

3結(jié)束語

綜上所述,開展建筑夜景照明設(shè)計優(yōu)化不僅可以改善城市外在景觀,還可以為人們提供更加便利的生活條件。將節(jié)能環(huán)保理念融入城市夜景照明設(shè)計時,必須重點落實電氣節(jié)能設(shè)計,在具體設(shè)計中重點優(yōu)化電氣節(jié)能設(shè)計方案、照明電氣控制系統(tǒng)、電能計量方式及配電箱位置等,以保證城市建筑夜景照明的穩(wěn)定性。

參考文獻

[1]李增勇,蕭倩美,何秀娟.建筑夜景照明電氣節(jié)能設(shè)計優(yōu)化[J].機電工程技術(shù),2021,50(8):257-259,318.

[2]唐明.建筑夜景照明的藝術(shù)營造方法研究[J].廣西城鎮(zhèn)建設(shè),2021(5):29-31.

[3]黃彥,周波.LED在建筑玻璃幕墻夜景照明中的應(yīng)用方法探討[J].燈與照明,2020,44(4):47-51.

[4]陳龍.建筑夜景照明電氣節(jié)能設(shè)計優(yōu)化[J].江蘇科技信息,2020,37(5):33-35.

[5]殷文榮,顏宏勇.淺析民用建筑夜景照明系統(tǒng)設(shè)計[J].現(xiàn)代建筑電氣,2019,10(10):41-45,50.

[6]張文力,嚴(yán)永紅.轉(zhuǎn)型期中國城市夜景照明的空間生產(chǎn)過程與機制:以重慶市為例[J].資源開發(fā)與市場,2021,37(6):692-697.

[7]劉晨宇,孫穎,孫璐,等.基于城市文化的鞏義市老城區(qū)街景改造研究[J].工業(yè)建筑,2019,49(12):69-74.

篇5

【關(guān)鍵詞】同步降壓;降壓控制器;場效應(yīng)管

【Abstract】A low voltage, high current Buck DC/ DC switching power supply with a synchronous buck controller LM5119 core and a low loss MOSFET and a forward topology is designed. It is composed of a filter circuit, a synchronous control circuit and a DC/DC Buck circuit. The filter circuit uses the parallel capacitor to reduce the ripple voltage. After testing, the efficiency of the power supply is greater than 92%, the ripple factor 0.063%-0.238%, the load effect of 0.0889%, the source effect 0.0056%-0.011%. The performance indicators are better than the marketed product level.

【Key words】Synchronous Buck; Buck Controller; FET

0 引言

隨著開關(guān)電源在計算機、通信、航空航天、儀器儀表及家用電器等方面的廣泛應(yīng)用,人們對其需求量日益增長,并且對電源的效率、體積、重量及可靠性等方面提出了更高的要求。開關(guān)電源以其效率高、體積小、重量輕等優(yōu)勢在很多方面逐步取代了效率低、又笨重的線性電源。隨著電力電子技術(shù)的發(fā)展,特別是大功率器件IGBT和MOSFET的迅速發(fā)展,將開關(guān)電源的工作頻率提高到相當(dāng)高的水平,使其具有高穩(wěn)定性和高性價比等特性。開關(guān)電源技術(shù)的主要用途之一是為信息產(chǎn)業(yè)服務(wù)。信息技術(shù)的發(fā)展對電源技術(shù)又提出了更高的要求,從而不斷促進了開關(guān)電源技術(shù)的發(fā)展。

1 研究目的

現(xiàn)在,市場上的高精密開關(guān)電源普遍價格較高,一般均在數(shù)百及千元以上,而且性能指標(biāo)并不算很高,且性能指標(biāo)更高的價格昂貴。我們希望可以設(shè)計出一款成本較低、各方面性能可以和市場性能較高的產(chǎn)品相媲美的一款穩(wěn)壓電源,以借此機會來鍛煉一下自己的動手能力,將自己所學(xué)到的知識運用到生產(chǎn)實踐中。

2 方案論證

2.1 PWM控制方案

方案一:采用單片機產(chǎn)生PWM

單片機編程產(chǎn)生的方波信號,易于調(diào)節(jié)、紋波小、抗干擾能力強。但在完成相應(yīng)要求的同時,因51單片機資源有限,在控制中需要用到PWM調(diào)制和A/D采樣,用51單片機產(chǎn)生高頻的PWM比較困難,而且會造成程序不穩(wěn)定,況且A/D轉(zhuǎn)換還需要外部器件,成本也較高。

方案二:采用TL494產(chǎn)生PWM

TL494是一個固定頻率的脈沖寬度調(diào)節(jié)電路,內(nèi)置了線性鋸齒波振蕩器,振蕩頻率可通過外部的一個電阻和一個電容進行調(diào)節(jié)。但電路較復(fù)雜,搭建困難。

方案三:采用LM5119炔康緶凡生PWM

LM5119 是一款雙同步降壓控制器,適用于高電壓或各種輸入電源的降壓型穩(wěn)壓器應(yīng)用。其控制方法基于采用仿真電流斜坡的電流模式控制。電流模式控制具有固有的輸入電壓前饋、逐周期電流限制和簡化環(huán)路補償?shù)墓δ?。使用仿真控制斜坡可降低脈寬調(diào)制電路對噪聲的敏感度,有助于實現(xiàn)高輸入電壓應(yīng)用所必需的極小占空比的可靠控制。LM5119 的工作頻率可以在 50 kHz 至 750 kHz 范圍內(nèi)設(shè)定。LM5119 可利用自適應(yīng)死區(qū)時間控制來驅(qū)動外部高邊和低邊 NMOS 功率開關(guān)管。用戶可選的二極管仿真模式可實現(xiàn)非連續(xù)模式操作,提高輕負(fù)載條件下的效率。具有自動切換外部偏壓功能的高電壓偏置穩(wěn)壓器可進一步提高效率。其他功能包括熱關(guān)斷、頻率同步、打嗝 (hiccup) 模式電流限制和可調(diào)輸入欠壓鎖定。該器件采用有芯片連接焊盤的功率增強型無引線 LLP-32 封裝,以幫助散熱[1]。

采用LM5119內(nèi)部電路產(chǎn)生PWM的優(yōu)點是電路穩(wěn)定性強,定時電阻Rt和AGND引腳之間連接的外部電阻可設(shè)定LM5119的開關(guān)頻率,Rt可同步內(nèi)部振蕩器至外部時鐘,使振蕩器產(chǎn)生相應(yīng)的PWM波。

通過比較上述三種方案及結(jié)合設(shè)計要求,可以看出方案三明顯優(yōu)于其他方案,所以采用方案三進行設(shè)計制作。

2.2 主回路拓?fù)浞桨?/p>

DC/DC主回路拓?fù)洳捎冒霕駼uck電路,通過LM5119的HO和LO端輸出的PWM控制2個MOS管實現(xiàn)交替導(dǎo)通,通過電感Lo和電容Chb的充放電實現(xiàn)降壓。減小了原邊開關(guān)管的電壓壓力,電路結(jié)構(gòu)簡單,可適用較高頻率電路。

3 產(chǎn)品(作品)設(shè)計與制作

3.1 輸入輸出電壓設(shè)定

輸入電壓范圍設(shè)定為12-20V,中心工作電壓16V。輸出設(shè)計為兩路:一路輸出9V、5A;另一路輸出5V、9A。通過對芯片使能端的設(shè)置,可以實現(xiàn)任一路輸出,也可以同時輸出,并且兩路可以各自獨立工作,互不干擾。

3.2 濾波電容選用

(1)輸入電容Cin:經(jīng)過不斷實驗嘗試,我們選擇了6個2.2uF的陶瓷電容并聯(lián),實現(xiàn)梯級濾波。

(2) VIN濾波器Cvin:考慮到需防止注入到VIN引腳的高頻開關(guān)噪聲引起電源故障,我們選用了0.47uF的陶瓷電容。

(3) UVLO分壓器Cft:考慮到為分壓器提供濾波,我們選用100pF的陶瓷電容。

(4) VCC電容Cvcc:考慮到需要為HO驅(qū)動器和自舉二極管提供峰值瞬態(tài)電流,并為VCC穩(wěn)壓器提供穩(wěn)定性,我們采用了0.47uF的電解電容。

(5)輸出電容Co:考慮到輸出電容器需平滑電感紋波電流引起的輸出電壓紋波,并在瞬態(tài)負(fù)載條件下提供充電電源,我們選用了兩個220uF的電解電容作為主輸出電容,并加入兩個22uF電容,進一步降低輸出電壓紋波和尖峰。

3.3 開關(guān)管選用

開關(guān)管一般采用IGBT或MOSFET,IGBT的優(yōu)點是耐壓高,但導(dǎo)通內(nèi)阻大,損耗大;MOSFET優(yōu)點是導(dǎo)通內(nèi)阻極小,但耐壓不高,但考慮到輸入輸出電壓均不高,且要求損耗小、體積小,所以選用貼片式低損耗MOSFET[2]。

3.4 輸出電感制作

進口貼片電感價格太高、采購耗時長,而且參數(shù)不可改變,所以我們采用自制電感,可以很方便通過改變電感線圈匝數(shù)而改變電感參數(shù)。

3.5 電路原理圖設(shè)計

根據(jù)設(shè)計方案和芯片使用說明,我們自主設(shè)計了工作原圖,由于在制作期間,需要多次調(diào)整參數(shù),所以畫的原理圖未標(biāo)出參數(shù)的具體數(shù)值,以便隨時調(diào)整元件參數(shù)。原理圖是使用ALTIUM DESIGNER軟件設(shè)計的。原理圖見圖1。

3.6 PCB設(shè)計

為了使控制芯片元件布局緊湊且達到良好效果,PCB板采用四層設(shè)計,讓電源和接地各占一層,并進行分區(qū),避免信號地和模擬地之間的串?dāng)_。由于電源線、接地線不再占用頂層和底層板面資源,所以可以將元器件布置得更緊湊,芯片工作狀態(tài)更好,可以獲得極佳效果,PCB板圖見圖2

3.7 產(chǎn)品制作

根據(jù)設(shè)計要求,我們通過反復(fù)論證確定了元件參數(shù)、型號和數(shù)量,并選購所需材料。然后精心制作,雖然絕大部分元器件采用貼片封裝,但我們都采取了手工焊接,實踐證明效果很不錯,作品實物圖見圖3。

4 總結(jié)

4.1 本產(chǎn)品(作品)的性能

本產(chǎn)品制作成本約為100元左右,而市場精密電源售價一般在數(shù)百甚或千元以上,我們的產(chǎn)品成本遠遠低于市場同類產(chǎn)品的價格,與我們同等價格的產(chǎn)品測出的性能指標(biāo)比我們的產(chǎn)品性能指標(biāo)相差一個數(shù)量級。紋波測試見圖4

從表1可以看出,我們產(chǎn)品的成本低、效率高,性能要遠遠高于市場水平,具有較大的發(fā)展前景。

4.2 本產(chǎn)品(作品)的創(chuàng)新點

(1)采用四層PCB板設(shè)計、元器件布局緊湊合理,電源工作狀態(tài)良好。

(2)自制電感線圈,替代了進口產(chǎn)品,不僅使電源綜合成本降低20%以上,而且感參數(shù)可以自行調(diào)整。

(3)本產(chǎn)品制造成本低,而性能指標(biāo)高(見表1),主要指標(biāo)均高于市售產(chǎn)品水平。

(4)極高的效率,對于滿載輸出45-90W的電源(單路輸出45W,雙路輸出90W)達到92.3%的效率,已差不多到了極限。

(5)采用節(jié)能設(shè)計,輕載時可以啟用二極管仿真模式,可以實現(xiàn)高效輸出;重載時,禁用二極管仿真模式,增強帶負(fù)載能力。

【參考文獻】

篇6

開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)管開通和關(guān)斷的時間比率,維持穩(wěn)定輸出電壓的一種電源。開關(guān)穩(wěn)壓電源具有體積小、重量輕、效率高、對電網(wǎng)電壓及頻率的變化適應(yīng)性強、輸出電壓保持時間長、有利于計算機信息保護等優(yōu)點,因而廣泛應(yīng)用于以電子計算機為主導(dǎo)的各種終端設(shè)備、通信設(shè)備,是當(dāng)今電子信息產(chǎn)業(yè)飛速發(fā)展不可缺少的一種電源。本文介紹的是基于單片機的PWM型開關(guān)穩(wěn)壓電源,項目是本人在教學(xué)中的實際案例,經(jīng)本人驗證后,實現(xiàn)效果較好。該項目結(jié)構(gòu)較為簡單,穩(wěn)定率高,實用性強,能夠應(yīng)用在較多場合。

【關(guān)鍵詞】開關(guān)電源 單片機 DC-DC變換器

1 引言

本人是一名技工院校的教師,從事電子技術(shù)的教學(xué)工作。單片機技術(shù)對學(xué)生來說是一門比較枯燥且復(fù)雜的課程,多數(shù)學(xué)生在學(xué)習(xí)過程中缺乏興趣,所以本人一直秉承項目教學(xué)的理念,通過項目來讓學(xué)生更好的掌握單片機技術(shù)。基于單片機的PWM型開關(guān)穩(wěn)壓電源設(shè)計項目經(jīng)本人與學(xué)生共同驗證后,推廣到教學(xué)層面上來。該項目中需要用到模擬電路、數(shù)字電路、電力電子技術(shù)、單片機技術(shù)、DXP繪圖等多個科目的知識,對學(xué)生來說有一定的難度,但又不是高不可攀的,在老師的指導(dǎo)下,大多數(shù)學(xué)生均可以完成該項目。現(xiàn)本人把該項目的設(shè)計實現(xiàn)過程具體描述如下。

2 項目原理簡述

開關(guān)電源就是利用電子開關(guān)器件(如晶體管、場效應(yīng)管、可控硅閘流管等),通過控制電路,使電子開關(guān)器件不停地接通和關(guān)斷。開關(guān)電源應(yīng)具備整流電路、濾波電路和穩(wěn)壓電路。PWM穩(wěn)壓電源是利用脈沖寬度調(diào)制的方法來控制開關(guān)元件的接通時間與管斷時間從而實現(xiàn)穩(wěn)壓輸出。該項目采用單片機來作為控制核心,能對輸出電壓進行鍵盤設(shè)定和初步調(diào)整;同時具有輸出電壓,電流的測量和數(shù)字顯示功能;具有過流檢測和保護功能。

3 項目設(shè)計方案

開關(guān)電源從結(jié)構(gòu)上包括主電路和控制電路,主電路又包括整流濾波電路和DC-DC變換器主回路??紤]到學(xué)生在學(xué)習(xí)過程中主要學(xué)習(xí)的是51系里單片機,且在學(xué)習(xí)過程中一直采用的是AT89S51單片機,故本項目采用AT89S51單片機作為控制電路的核心。項目整體結(jié)構(gòu)框圖如圖1。

3.1 整流濾波電路

常見的單相整流電路主要有:半波整流、全波整流、橋式整流。本設(shè)計中,主回路采用了結(jié)構(gòu)簡單、效率高的降壓型(Buck)DC-DC變換器。為提高主回路的輸入電壓UIN,整流濾波電路部分采用了三倍壓整流電路,如圖2所示。

3.2 DC-DC變換器電路

常見的PWM型DC-DC變換器主要有降壓型(Buck)、升壓型(Boost)、降壓-升壓型(Buck-Boost)和升壓-降壓型(Cuk)。后三種變換器均可使輸出電壓高于輸入電壓,但需要利用電感或電容作為傳送能量的元件,這會使主回路制作復(fù)雜,降低變換器總體效率。為此,本設(shè)計采用了通過三倍壓整流電路提高DC-DC變換器輸入電壓,而DC-DC變換器為降壓型的總體方案,如圖3所示。

本項目中,為了提高DC-DC變換器的效率,我們采用飽和導(dǎo)通壓降小、開關(guān)速度快的IGBT作為開關(guān)元件,同時采用工作性能穩(wěn)定,開關(guān)速度較高的M57962L驅(qū)動IGBT。

IGBT在關(guān)斷瞬間是最易發(fā)生損壞的過程,所以我們需要保護電路。保護方法有兩種:一是在集電極――發(fā)射極電壓處于低值時,關(guān)斷IGBT;二是IGBT關(guān)斷時,集電極電壓上升的同時,較快的減少集電極電流。本項目中采取了第二種方法,通過在IGBT的C、E兩端添加RC緩沖器,減少關(guān)斷瞬間的集電極電流。工作原理是:當(dāng)IGBT關(guān)斷時,電容C通過二極管D1充電到(VC-VD1)。這樣集電極電流有了分路,集電極電流能較快的減小。當(dāng)IGBT導(dǎo)通時,電容C通過電阻R和IGBT放電。

為保證開關(guān)元件工作可靠,IGBT額定工作電壓,額定工作電流應(yīng)為最大值的兩倍以上,故選擇GT40T101型IGBT作為開關(guān)元件。由于M57962L最高工作頻率為20KHz,且工作在該頻率時不易產(chǎn)生人耳能聽到的噪聲,故IGBT工作頻率f=20KHz。

3.3 PWM控制模塊

PWM控制部分我們采用開關(guān)電源集成控制器SG3525A,該芯片具有輸出頻率范圍寬,工作電壓范圍廣,基準(zhǔn)電源精度高,死區(qū)時間可調(diào)等優(yōu)點。SG3525A具有兩個交替工作的輸出端,本設(shè)計中只需控制一個開關(guān)元件,所以采用了兩輸出端經(jīng)過4071同時驅(qū)動開關(guān)元件的方法。為避免上電瞬間對開關(guān)元件造成的沖擊,利用電容C3使主回路軟啟動。R2與R3組成分壓電路取樣輸出端電壓,作為SG3525A的反饋電壓。過流保護部分我們采用CHF-5P型霍爾電流傳感器將輸出電流轉(zhuǎn)換為電壓反饋信號,并與R6設(shè)定的過流值比較,如果反饋值較高則通過SG3525A的10腳,使其停止工作,并通過J1的2腳點亮報警LED,實現(xiàn)過流檢測和保護功能。具體電路如圖4所示。

3.4 鍵盤輸入及顯示部分

鍵盤輸入部分,由于我們需要對開關(guān)電源直接設(shè)定電壓,且需要步進1V的功能,所以我們需要0-9的數(shù)字、加1和減1,再加上確定和取消共14個按鍵,所以我們采用14按鍵的鍵盤設(shè)定。

顯示部分我們采用數(shù)碼管顯示,因為我們只需要顯示數(shù)字且沒有什么特殊的要求,基于數(shù)碼管的價格便宜,使用方便,易于控制等特點,所以該項目中我們采用八段LED數(shù)碼管作為電壓輸出顯示。DC-DC變換器輸出電壓檢測及顯示采用了ICL7107,該芯片可獨立完成電壓檢測并驅(qū)動3支八段LED數(shù)碼管,無需占用單片機資源。DC-DC變換器輸出電流檢測及顯示同樣采用了ICL7107,利用一只1歐姆的電阻可將電流信號轉(zhuǎn)換為電壓信號。

3.5 軟件部分

單片機主程序流程圖如圖5所示。

4 調(diào)試遇到的問題及解決方案

(1)過流檢測功能失效,經(jīng)檢查發(fā)現(xiàn)SG3525的10腳虛焊,重新焊接后正常。

(2)IGBT工作一段時間后過熱影響電路的穩(wěn)定性,考慮到IGBT散熱量比較大,加裝散熱片后有所改善。

(3)三倍壓整流電路中電容C1、C2工作正常,但C3爆炸,經(jīng)仔細(xì)分析后,原因在與C3兩端由于需要承受電壓較高,50V的耐壓值不夠故而發(fā)生爆炸,為提高耐壓,將兩組電容串聯(lián)后作為C3,故障解決。

(4)鍵盤出錯,由于該項目中按鍵有14個,故而鍵盤程序較多,經(jīng)仔細(xì)檢查發(fā)現(xiàn)鍵盤編碼錯誤,改正后故障解決。

5 結(jié)論

開關(guān)穩(wěn)壓電源的設(shè)計方法有很多種,市面上也有很多的成品可以參考。該項目是以教學(xué)為目的,并沒有過多的考慮成本壓力,故而采用的是現(xiàn)階段比較成熟的集成芯片作為控制芯片,可能與企業(yè)實際應(yīng)用還有一定的差距。經(jīng)過實際參數(shù)測試,還發(fā)現(xiàn)該開關(guān)穩(wěn)壓電源效率不不是很高,經(jīng)本人思考后,原因可能是IGBT導(dǎo)通和關(guān)斷時集電極電流較大,損耗了較大功率,這也是本人在以后的教學(xué)中需要和學(xué)生共同努力去改進的。

參考文獻

[1]王宜建,張桂玉.電力電子變流技術(shù)[M].北京:科學(xué)出版社,2009.

[2]裴云慶,楊旭,王兆安.開關(guān)電源的設(shè)計與應(yīng)用[M].北京:機械工業(yè)出版社,2010.

[3]常敏慧,申功邁.開關(guān)電源應(yīng)用設(shè)計與維修[M].北京:科學(xué)技術(shù)文獻出版社,2002.

篇7

[關(guān)鍵詞]單片開關(guān)電源 復(fù)合式 AC/DC MAX8873

一、引言

電源是現(xiàn)代電力電子設(shè)備不可缺少的組成部分,其性能的優(yōu)劣直接影響設(shè)備的性能。傳統(tǒng)的電源由于笨重、效率低而逐漸被重量輕、體積小、效率高的開關(guān)電源所代替。復(fù)合式開關(guān)電源作為一種高效率的開關(guān)電源,是對線性穩(wěn)壓電源和開關(guān)穩(wěn)壓電源進行優(yōu)化組合形成的一種電源設(shè)計方案,它即具有輸出電壓穩(wěn)定程度高、紋波電壓小、電源轉(zhuǎn)換效率高等眾多優(yōu)點。本文介紹了一種新型復(fù)合式開關(guān)穩(wěn)壓電源,該電源采用了一種新型單片AC/DC單片開關(guān)電源作為前級穩(wěn)壓器,為低壓差線性穩(wěn)壓器MAX8873提供直流輸入電壓,然后利用低壓差線性穩(wěn)壓器MAX8873獲得高質(zhì)量的穩(wěn)壓輸出,組成高效率、輸出可調(diào)的復(fù)合穩(wěn)壓電源。實驗證明該電路具有良好的性能,有很高的實用性。

二、AC/DC開關(guān)電源

本設(shè)計采用基于Trench DMOS工藝設(shè)計的一種AC/DC開關(guān)電源管理芯片。該芯片的工作方式為PWM即脈沖寬度調(diào)制方式;電路正常工作溫度范圍是-35℃至130℃;工作的開關(guān)頻率為100KHz;占空比調(diào)節(jié)范圍是3%~65%。其特點是寬壓輸入,輸出電壓紋波小,芯片效率高。該開關(guān)電源變換器集成了耐650V高壓的功率開關(guān)管、電流限流比較器、振蕩器、旁路調(diào)整器/誤差放大器、高壓電流源、基準(zhǔn)源和過溫、過壓/欠壓、過流及自動重啟等保護電路,采用PWM調(diào)制模式達到在不同的負(fù)載下的高效率,采用隔離結(jié)構(gòu)降低了芯片的EMI。開關(guān)電源控制集成電路的原理圖如圖1所示:

針對變壓器原邊繞組的漏感產(chǎn)生的高壓毛刺,采用二極管D1與穩(wěn)壓管VR1并聯(lián)接入原邊繞組側(cè),用來吸收高壓毛刺。光電耦合三極管U2的偏置電壓由二極管D3與電容C3構(gòu)成的整流電路提供。穩(wěn)壓管VR2、電阻R1、光電耦合三極管U2、電容C5組成電壓反饋電路,用來確保電壓穩(wěn)定能都穩(wěn)定輸出。穩(wěn)壓管VR2和電阻R2保證了電源空載或輕載時輸出電壓的穩(wěn)定性。利用電容C2降低輸出直流電壓的交流紋波。

電路工作原理:輸入交流電先經(jīng)過整流橋BR1整流,之后再經(jīng)電容C1濾波,最后轉(zhuǎn)變?yōu)槊}動的直流電壓。當(dāng)MOSFET開關(guān)管導(dǎo)通時,電容C1兩端的電壓加到反激變壓器的原邊,流過原邊繞組的電流線性增加,變壓器儲存能量。當(dāng)MOSFET開關(guān)管關(guān)斷時,電感原邊電流由于沒有回路而突變?yōu)榱?此時穩(wěn)壓管VR1的擊穿電壓高于原邊的感應(yīng)電勢而截止。

該AC/DC開關(guān)電源控制芯片結(jié)構(gòu)示意圖如圖2所示,該集成電路的主要組成部分有旁路調(diào)整器/誤差放大器、鋸齒波/振蕩發(fā)生電路、PWM比較器、基準(zhǔn)電壓源、軟啟動電路、上電復(fù)位電路及其它保護電路等。

從圖2可以看出控制芯片的最大特色是把外置管腳數(shù)控制為三個。振蕩器和功率管的內(nèi)置使管腳數(shù)減少,功率管的內(nèi)置還提供了啟動偏置電壓。控制引腳C不僅給內(nèi)部供電,還提供了反饋電流信號,可用于控制電路的旁路電流和控制PWM占空比。此外,來利用功率管的導(dǎo)通電阻作為敏感電阻,來實現(xiàn)各個周期內(nèi)的限流保護,這些都是該電路的特色。

三、低壓差線性集成穩(wěn)壓器MAX8873

低壓差集成穩(wěn)壓器是近年來應(yīng)用廣泛的高效率線性穩(wěn)壓集成電路。傳統(tǒng)的三端集成穩(wěn)壓器普遍采用電壓控制型,為保證穩(wěn)壓效果,其輸入輸出壓差一般取2V~4V來保證正常工作。低壓差穩(wěn)壓器采用電流控制型,選用低壓降的晶體管作為內(nèi)部調(diào)整管,能夠把輸入輸出壓差降低到0.6V以下,提高了電源的轉(zhuǎn)換效率。產(chǎn)品主要有MAXIM公司生產(chǎn)的MAX8873系列,MICREL公司生產(chǎn)的MIC39500系列,TI公司生產(chǎn)的TPS767系列,LT公司生產(chǎn)的LT1528系列等。本文采用應(yīng)用廣泛的MAX8873芯片,MAX8873的典型工作電路如圖3所示。

MAX8873是MAXIM公司生產(chǎn)的輸出120mA的低壓差線性穩(wěn)壓器。其中IN和OUT分別為電壓輸入端和輸出端,GND為公共端,SET和SHDN分別為調(diào)整端和控制端。其主要特點有:組成電源元件最少,壓差低,靜態(tài)電流低,有關(guān)閉電源控制,輸出電壓固定,由外接電阻組成的分壓器時輸出電壓可調(diào),內(nèi)部有輸出電流限制、過熱保護及電池反接保護等。

MAX8873有兩種工作模式:工作在預(yù)置的電壓模式下或工作在可調(diào)的電壓模式下。在預(yù)置的電壓模式下,內(nèi)部電位器能夠設(shè)置它的輸出電壓,我們通過連接SET端到地選擇這種模式。在可調(diào)模式下,我們通過在SET端連上兩個外部電阻作為分壓器來選擇輸出電壓,電壓范圍可從1.25V到6.5V。

為了減小寄生電容的影響,我們在電阻R1兩端串上一個10PF到25PF的電容。而在預(yù)置電壓模式下,SET端和地之間的阻值不能小于100K,否則SET端的電壓將超過兩種工作模式的門限值60mV。

四、新型復(fù)合式開關(guān)穩(wěn)壓電源的設(shè)計

本復(fù)合式開關(guān)穩(wěn)壓電源的原理圖如圖4所示。

電源輸入交流寬輸入電壓85V-265V,雙路輸出電壓+5V/1.5A,-5V/1.5A,輸出功率15W。電路包括輸入整流濾波,脈寬調(diào)制,高頻變壓器,電流反饋,低壓差線性穩(wěn)壓,整流濾波輸出等幾部分。交流輸入經(jīng)整流濾波后,產(chǎn)生一個的直流電壓加在變壓器初級繞組的一端和控制芯片的源極,變壓器初級的另一端由控制芯片內(nèi)的高壓功率管驅(qū)動。變壓器兩組副邊經(jīng)整流濾波后分別產(chǎn)生±5.5V的輸出電壓,該電壓經(jīng)LC濾波后輸入到MAX8873中,經(jīng)MAX8873輸出后再通過下一級LC輸出濾波得到±5V的高穩(wěn)定輸出。

在設(shè)計PCB板時要注意,電容C2負(fù)極應(yīng)直接連反饋繞組,將反饋繞組上的浪涌電流直接返回到輸入濾波電容,提高抑制浪涌干擾的能力??刂贫烁浇碾娙輵?yīng)盡可能靠近源極和控制端的引腳??刂菩酒脑礃O采用單點接地法,即控制端旁路電容C12的負(fù)極、反饋電路的返回端、高壓返回端應(yīng)分開布線,最后在源極管腳處匯合。安全電容C13應(yīng)通過寬而短的印制導(dǎo)線分別接至反饋繞組和次級繞組的返回端。盡量使用大尺寸的低電感引線。

五、實驗結(jié)果

在市電輸入下,當(dāng)負(fù)載從0達到額定值時,電路的負(fù)載調(diào)整率為95%,輸出電壓紋波在40mV左右,輸出紋波主要由變壓器漏感的電壓和整流管電壓產(chǎn)生,可以通過進一步優(yōu)化PCB版布局等方法來改善。

六、結(jié)束語

本文采用基于Trench DMOS工藝設(shè)計的一種AC/DC開關(guān)電源管理芯片和低壓差線性穩(wěn)壓器MAX8873設(shè)計了一種新型通用的復(fù)合式開關(guān)穩(wěn)壓電源。該電源具有體積小,效率高,輸出電壓穩(wěn)定,負(fù)載調(diào)整率好等優(yōu)點,實驗表明該電源是一種性能良好的高精度穩(wěn)壓源。

參考文獻:

[1]黃俊,王兆安.電力電子變流技術(shù).北京:機械工業(yè)出版社,1999.

[2]劉勝利.現(xiàn)代高頻開關(guān)電源實用手冊.北京:電子工業(yè)出版社,2001.

[3]沙占友.新型單片開關(guān)電源設(shè)計與應(yīng)用技術(shù).北京:電子工業(yè)出版社,2004.

篇8

關(guān)鍵詞:電源電路;低噪聲;光電檢測;信號調(diào)理

中圖分類號:TP391 文獻標(biāo)識碼:A

在微弱光信號的檢測中,利用光電倍增管(PMT)檢測微弱信號仍然是一種主要方式。為此本文設(shè)計了一種基于光電倍增管(PMT)模塊H10723-20的供電電路和信號調(diào)理電路,用于浮游植物粒徑檢測系統(tǒng)中微弱熒光信號的檢測。由于需要檢測的熒光信號比較微弱,背景噪聲將對檢測結(jié)果的精度和穩(wěn)定性產(chǎn)生很大的影響,因此所設(shè)計的電路應(yīng)必須具有較小的噪聲和紋波。

1 系統(tǒng)設(shè)計方案

PMT模塊H10723-20使用±5V的直流電壓作為輸入,為減小電源噪聲,本文選擇由輸出為12V的開關(guān)電源通過DC-DC電壓轉(zhuǎn)換器轉(zhuǎn)換而來的±5V電壓作為PMT模塊的輸入電壓。為方便后續(xù)電路對由H10723-20轉(zhuǎn)化而來的電信號的傳輸和處理,本文設(shè)計了信號調(diào)理電路來調(diào)理、放大PMT模塊的輸出電壓。由于檢測到的光信號強度不同,為更加靈活的檢測到光信號并防止強光對光電倍增管模塊的損壞,本文為PMT模塊設(shè)計了靈敏度調(diào)節(jié)電路,應(yīng)對不同光強的光信號的檢測。

電路主要由以下幾部分組成:開關(guān)電源、DC-DC電壓轉(zhuǎn)換芯片、芯片電路、PMT模塊、PMT靈敏度調(diào)節(jié)電路、信號調(diào)理電路,其總體結(jié)構(gòu)框圖如圖1所示。圖1中開關(guān)電源用來提供12V的電源電壓;DC-DC電壓轉(zhuǎn)換芯片將開關(guān)電源提供的12V電壓轉(zhuǎn)換為±5V的電壓供H10723-20使用,芯片電路用來降低±5V電壓的噪聲和紋波,提高輸出電壓的穩(wěn)定性;靈敏度調(diào)節(jié)電路用來控制PMT模塊的靈敏度;信號調(diào)理電路用來調(diào)理、放大PMT模塊輸出的電信號。

2 電源電路設(shè)計

2.1 DC-DC電壓轉(zhuǎn)換芯片的選擇

經(jīng)過各種DC-DC電壓轉(zhuǎn)換芯片的比較分析,本文最終選擇MURATA公司的NMA1205DC芯片作為DC-DC電壓轉(zhuǎn)換器。該芯片標(biāo)準(zhǔn)輸入電壓為12V;輸出為雙路輸出±5V,輸出電流為±100mA。

該芯片內(nèi)具有短路保護和熱保護電路,且輸入和輸出相隔離,消除了直流路徑,減小了開關(guān)噪聲,使芯片具有較高的可靠性。芯片通過內(nèi)部濾波電路平滑、濾波得到穩(wěn)定的±5V大小的輸出電壓,使輸出電壓的紋波和噪聲小于20mV。

2.2 芯片電路介紹

為更進一步減小輸出電壓的噪聲,本文采用圖2所示的芯片電路對芯片輸入、輸出電壓進行調(diào)理,有效降低輸出電壓紋波和噪聲。

圖2中DC-DC電壓轉(zhuǎn)換芯片NMA1205DC的輸入端加入電容的主要目的是為了降低來自上一級的紋波和噪聲,較大的電容會使系統(tǒng)工作更加穩(wěn)定,但考慮到PCB面積的損耗、其他器件的正常工作情況以及對應(yīng)用系統(tǒng)中其余電路的干擾,本文的輸入電容選用阻抗小的鋁聚合物電解電容。考慮到輸出電壓噪聲、轉(zhuǎn)換器頻率、輸出電壓紋波等因素,芯片輸出端采用LC濾波電路平滑輸出電壓,減小輸出電壓紋波和噪聲。由于大的電感可以降低輸出電流和輸出電壓紋波且增大芯片的帶負(fù)載能力,但卻會耗費過多的PCB面積,綜合考慮電路噪聲、電壓紋波、電感的尺寸、PCB面積等因素,本文選擇22μH電感,電容C25、C26選擇鋁聚合物電解電容,C20、C22選擇陶瓷電容,

3 PMT靈敏度調(diào)節(jié)電路

本文通過高精度旋轉(zhuǎn)式電位器的滑動實現(xiàn)對PMT靈敏度的調(diào)節(jié),具體原理為通過滑動電位器改變電阻值進而改變PMT模塊H10723-20引腳Vcont IN和Vref OUT之間的電壓值,不同的電壓值決定了不同的靈敏度,從而實現(xiàn)了PMT的靈敏度的調(diào)節(jié)。為防止電位器在調(diào)節(jié)時滑至兩端,出現(xiàn)短路的情況,在電位器兩邊分別加入電阻,以保護H10723-20模塊,避免因短路導(dǎo)致PMT損壞。電路原理如圖3所示。

4 信號調(diào)理電路設(shè)計

為滿足后續(xù)電路對電壓信號的要求,本文利用集成運算放大器AD823AN設(shè)計了放大電路來放大PMT模塊的輸出電壓,電路原理圖如圖4所示。

放大電路輸入級為放大級,主要用來放大PMT模塊輸出的電壓信號,并利用電容和電阻構(gòu)成有源低通濾波器,濾除高頻噪聲,提高電路性能。輸出級為電壓跟隨器,輸出電壓近似輸入電壓幅值,并對前級電路呈高阻狀態(tài),對后級電路呈低阻狀態(tài),使前、后級電路之間的相互影響很小,因而對前后級電路起到緩沖、隔離作用,并且具有很好的帶負(fù)載能力。

5 結(jié)果分析

將本文設(shè)計的電路用在浮游植物粒徑檢測系統(tǒng)中,用來檢測由波長445nm的激光激發(fā)產(chǎn)生的熒光光信號,系統(tǒng)設(shè)定波形經(jīng)過10點移動平滑。所得熒光信號的波形如圖5所示,整體波形具有較小的紋波和噪聲,具有較高的信噪比,波形兩邊有較小的浮動是由于浮游植物粒徑檢測系統(tǒng)中波長為532nm的激光激發(fā)產(chǎn)生的少量熒光信號造成的,與本文所設(shè)計的電路無關(guān),且不影響粒徑的正確計算,本文的設(shè)計完全可以滿足浮游植物粒徑檢測實驗的要求,具有良好的效果。

結(jié)語

本文設(shè)計的電路應(yīng)用在浮游植物粒徑檢測系統(tǒng)中,為該系統(tǒng)中的光電檢測模塊提供電源,并且對光電檢測模塊輸出的信號進行調(diào)理和放大,有效地減小了電路噪聲和紋波,得到了較好的熒光信號波形,有效的保證了檢測結(jié)果的精度和整個檢測系統(tǒng)的穩(wěn)定性。

參考文獻

[1]王霞,王吉暉,高岳,金偉其.光電檢測技術(shù)與系統(tǒng)(第三版)[M].北京:電子工業(yè)出版社,2015.

[2]侯惠淇,韓志剛,Jordi Cosp-Vilella.線性輔助的DC-DC電壓轉(zhuǎn)換器的設(shè)計[J].電子技術(shù)應(yīng)用,2015,41(07):47-49.

[3]劉潔.高效率電壓模同步降壓型DC-DC轉(zhuǎn)換器的研究與設(shè)計[D].西安:西安電子科技大學(xué),2012.

[4]脫立芳.降壓型PMW DC-DC開關(guān)電源技術(shù)研究[D].西安:西安電子科技大學(xué),2008.

篇9

關(guān)鍵詞:電動汽車;充電電源;并聯(lián)均流技術(shù)

電動汽車以電代油,可有效減少車輛環(huán)境污染,緩解交通運輸行業(yè)對石油資源過度消耗。電動汽車環(huán)保節(jié)能,是建設(shè)資源節(jié)約型、環(huán)境友好型社會和實現(xiàn)可持續(xù)發(fā)展的重要手段,當(dāng)今世界面臨資源不足、環(huán)境污染等問題,電動汽車由于其良好的性能和比肩傳統(tǒng)汽車的駕駛體驗而成為了當(dāng)下汽車行業(yè)新寵。越來越多的國家、企業(yè)投入到了電動汽車的成長行列中,我國也加大了對電動汽車行業(yè)的投入和支持,尤其是純電動汽車。國際上純電動汽車技術(shù)日趨成熟,純電動汽車已成為新型、適用、環(huán)保的代名詞,也是將來我國汽車產(chǎn)業(yè)重點發(fā)展和加大投入的重要方向。

1 技術(shù)領(lǐng)域及背景

“充電電源模塊并聯(lián)均流”方案的采用,主要是由于單臺充電電源模塊的輸出電流、功率不能滿足電動汽車大容量電池快速充電的需求,因此在際使用中采用模塊并聯(lián)的構(gòu)造方法,用一定規(guī)格的模塊式電源并聯(lián)來達到充電電源大的電流輸出和功率輸出的目的。一般情況就是電源模塊輸出之間的并聯(lián),必要的時候采用每個模塊相等的負(fù)載電流,或者會出現(xiàn)一些并聯(lián)的模塊的輕載運行,有的甚至?xí)^載的情況,輸出的電源不但不能為其供電,還會成為電壓輸出模塊的負(fù)載,也就很容易導(dǎo)致其損壞,所以對于電動充電電源之間模塊需要進行統(tǒng)一處理,必須采用一定的均流技術(shù),以此在增加電源輸出功率的同時提高電動汽車充電電源的可靠性等各項性能。

2 充電電源并聯(lián)系統(tǒng)不均流的原因分析

根據(jù)輸出的類型,一般可以對電源分為恒壓電源和恒流電源。對恒流電源進行并聯(lián),由于系統(tǒng)中電流很多的反饋沒有及時有效的處理,所以對于系統(tǒng)輸出電流將會因為反饋系數(shù)對相同的數(shù)據(jù)保持差別,也就不會采用恒壓電源進行,但是在對處理的時候,系統(tǒng)并聯(lián)設(shè)計需要進行及時的分析,全面的了解系統(tǒng)的設(shè)計方案,保證各個輸出的恒壓電流的性質(zhì),也就導(dǎo)致輸出的電壓之間存在很大的差距,所以需要采取一定的均流電源技術(shù)。根據(jù)使用的開關(guān)電源的結(jié)構(gòu)和恒壓電源的輸出的特征進行分析,對輸出的均流電源進行及時的總結(jié),具體來說,對于引起系統(tǒng)不均流的原因主要包括以下三種,就是對反應(yīng)系統(tǒng)和電源輸出的電流的差異性、輸入到負(fù)載的銜接電阻不匹配、外部寄生參數(shù)不一致。依據(jù)體系不均流緣故原由,則可以采用主動均流技術(shù)確保各模塊間電流被主動平均分配,從而確保體系統(tǒng)各并聯(lián)模塊均處于同等功率輸出狀況。

3 充電電源并聯(lián)均流技術(shù)的分析

3.1 輸出阻抗法

在日常的工作中,電源模塊的輸出阻抗并聯(lián)輸出法也被稱作電壓調(diào)節(jié)率法,這種方法是通過調(diào)節(jié)開關(guān)變換器的外特性即調(diào)節(jié)輸出阻抗,達到并聯(lián)模塊均流的目的。

輸出阻抗法在實際工作過程中,是最容易實現(xiàn)多個模塊電源均流輸出的方法,這種方法的本質(zhì)是采用開環(huán)控制,因此在小電流時很容易造成電流分配特性差、重載時不均衡等問題。在工作過程中,為很好的滿足每個模塊的使用要求,還要對個別的模塊進行有效的調(diào)整,還要對出現(xiàn)的問題及時的指出,對很多的電流影響因素進行分析,對于元器件的容差、元件老化、物理條件改變使元件性能的變化有差別等。在用輸出阻抗法實現(xiàn)均流的電源系統(tǒng)運行一段時間,電流分配又會不均勻了。

3.2 主從設(shè)置法

對主從設(shè)置法主要就是指電源在并聯(lián)系統(tǒng)中n個電源模塊的使用中,通過對每個電源模塊的主電源的設(shè)置,對其他在電源模塊的跟蹤過程中,保證輸出的電流。主從設(shè)置法適用于電流型控制的并聯(lián)系統(tǒng)中,這種均流控制的精度很高,但主要缺點是一旦主控模塊失效,則整個電源系統(tǒng)不能正常工作,因此這個方法不適用于冗余并聯(lián)系統(tǒng)。

3.3 自動均流法

對于自動均流法就是根據(jù)溫度的相應(yīng)控制,保證并聯(lián)系統(tǒng)的分率分配方法,對各個模板的電源之間進行不同的并聯(lián)處理,同時根據(jù)模塊自身的溫度對現(xiàn)實的功率進行相應(yīng)的調(diào)節(jié),一般情況都是系統(tǒng)的電流控制的實現(xiàn),所以需要對系統(tǒng)中各個模塊的電源的所占比例的分析,采用溫度控制的方法,各模塊的功率是由該模塊的溫度決定的,而不是電流,從而使各模塊內(nèi)部溫度趨于相等。這樣,在最低成本下達到最高的可靠性。

3.4 強迫均流法

強迫均流是通過監(jiān)控單元模塊實現(xiàn)均流控制,一般通過軟件控制來實現(xiàn):并聯(lián)電源系統(tǒng)監(jiān)控軟件通過計算和比較各并聯(lián)電源模塊的輸出電流與系統(tǒng)平均電流,然后再調(diào)整個別電源模塊輸出電壓,使其電流與平均電流相等。這種方式易于實現(xiàn)、均流控制精度高,但其瞬態(tài)響應(yīng)比較差、調(diào)節(jié)時間長、成本高。

4 結(jié)束語

本文介紹和電動汽車充電電源并聯(lián)均流問題的提出,詳細(xì)地討論了一些充電電源并聯(lián)均流技術(shù)的原理及優(yōu)缺點。隨著電動汽車及其充電電源技術(shù)的發(fā)展,針對不同充電系統(tǒng)的要求,基于各種智能化的檢測、運算和控制,可以更好地采用復(fù)雜的控制策略,實現(xiàn)均流冗余、故障檢測、熱拔插維修和模塊的智能管理。

參考文獻

[1]高玉峰.充電電源模塊并聯(lián)均流系統(tǒng)的研究[J].電源技術(shù),2011,02.

[2]馬駿.一種充電電源并聯(lián)系統(tǒng)自動均流技術(shù)的研究[J].電源技術(shù),2011,08.

[3]單曉宇.一種電流自平衡充電電源并聯(lián)技術(shù)[J].電器與能效管理技術(shù),2014,21.

[4]王新寬,魏殿杰.軟開關(guān)自主均流智能直流電源裝置的設(shè)計[J].電工技術(shù),2004,3.

作者簡介:張家貴(1987-),男,湖北荊門人,中級工程師,研究方向:嵌入式軟硬件。

篇10

任何種類的電源設(shè)計,都必須有出色的電源防護才能更安全可靠的工作,電路保護對每個電源工程師而言都至關(guān)重要。電源資深專家、發(fā)明家陶顯芳老師kRESD防護與電路設(shè)計的技術(shù)介紹與技巧分享拉開了整個研討會的序幕,突出了以理論為基礎(chǔ),以實踐經(jīng)驗分享為主要內(nèi)容的會議特色。

在電源設(shè)計中,電磁輻射需要ESD來進行防護,不過在另一個領(lǐng)域,電磁輻射加以利用又成為一個全新市場的技術(shù)基礎(chǔ)。隨著便攜設(shè)備的盛行,便攜設(shè)備的電力供應(yīng)成為一個非常讓人頭疼的話題,而能夠擺脫沉重的充電器束縛,隨時隨地為便攜設(shè)備充電的無線充電技術(shù)變得越來越受歡迎,在這個全新的技術(shù)領(lǐng)域,IDT全球模擬產(chǎn)品業(yè)務(wù)發(fā)展總監(jiān)陳日亮跟大家一起從技術(shù)到市場前景等多個角度探討了無線充電的行業(yè)趨勢。

無線充電現(xiàn)在的挑戰(zhàn)是充電效率,而數(shù)字電源無疑是提升電源管理效率一個非常重要的手段,隨著各種系統(tǒng)的能效要求越來越高,數(shù)字電源變得越來越普及。Exar數(shù)字電源應(yīng)用工程師周種以“創(chuàng)新數(shù)字電源解決方案——助您設(shè)計加速”為題,與廣大工程師一起分享了一些最新的數(shù)字電源解決方案,而英飛凌科技市場部經(jīng)理胡鳳平則以最新的功率器件為基礎(chǔ),帶來了多個英飛凌高效率電源管理方案展示。英聯(lián)半導(dǎo)體產(chǎn)品營銷高級經(jīng)理黃偉德的內(nèi)容也圍繞著數(shù)字電源管理展開,推薦了多個英聯(lián)半導(dǎo)體綠色電源芯片級解決方案。

采用數(shù)字電源是為了提升效率,提升效率就是節(jié)能,節(jié)能就是節(jié)約成本,這恰恰也是節(jié)能的最大市場推動力,從基本的物理原理上我們知道,高壓交流輸電可以有效提升能源傳輸和使用的成本,對于高壓直流電是否也會如此?Vicor高級應(yīng)用工程師吳際先生就此話題與現(xiàn)場觀眾一起了解利用Vicor 400V高壓直流配電方案改進能源使用成本。

電源設(shè)計中,穩(wěn)定可靠的電源測試保障是必不可少的一步,來自廣州致遠電子股份有限公司市場部經(jīng)理李佰華,從最新的功率測試儀入手,與大家一起談?wù)劇靶履茉串a(chǎn)品測試”的注意事項,而泰克中國區(qū)行業(yè)渠道電力電子開發(fā)經(jīng)理王躍偉為大家介紹“如何應(yīng)對開關(guān)電源設(shè)計中的挑戰(zhàn)”的各種經(jīng)驗技巧分析。