东京热福利视频导航|日韩无码不卡一区|成人高清手机在线|在厨房乱子伦对白一区二区|中文字幕网址导航|国产原创在线亚洲黄色大片高清无码|深爱激情五月丁香亚洲综合社区|成人在线手机视频|浮力影院成人A片|日韩限制电影在线观看

Evolving Systems
  • 數(shù)據(jù)庫收錄SCIE
  • 年發(fā)文量74

Evolving Systems

期刊中文名:不斷發(fā)展的系統(tǒng)ISSN:1868-6478E-ISSN:1868-6486

該雜志國際簡稱:EVOL SYST-GER,是由出版商SPRINGER HEIDELBERG出版的一本致力于發(fā)布計算機科學研究新成果的的專業(yè)學術期刊。該雜志以COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE研究為重點,主要發(fā)表刊登有創(chuàng)見的學術論文文章、行業(yè)最新科研成果,扼要報道階段性研究成果和重要研究工作的最新進展,選載對學科發(fā)展起指導作用的綜述與專論,促進學術發(fā)展,為廣大讀者服務。該刊是一本國際優(yōu)秀雜志,在國際上有很高的學術影響力。

基本信息:
期刊簡稱:EVOL SYST-GER
是否OA:未開放
是否預警:
Gold OA文章占比:5.48%
出版信息:
出版地區(qū):GERMANY
出版周期:6 issues per year
出版語言:English
出版商:SPRINGER HEIDELBERG
評價信息:
中科院分區(qū):4區(qū)
JCR分區(qū):Q3
影響因子:2.7
CiteScore:7.8
雜志介紹 中科院JCR分區(qū) JCR分區(qū) CiteScore 投稿經(jīng)驗

雜志介紹

Evolving Systems雜志介紹

《Evolving Systems》是一本以English為主的未開放獲取國際優(yōu)秀期刊,中文名稱不斷發(fā)展的系統(tǒng),本刊主要出版、報道計算機科學-COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE領域的研究動態(tài)以及在該領域取得的各方面的經(jīng)驗和科研成果,介紹該領域有關本專業(yè)的最新進展,探討行業(yè)發(fā)展的思路和方法,以促進學術信息交流,提高行業(yè)發(fā)展。該刊已被國際權威數(shù)據(jù)庫SCIE收錄,為該領域相關學科的發(fā)展起到了良好的推動作用,也得到了本專業(yè)人員的廣泛認可。該刊最新影響因子為2.7,最新CiteScore 指數(shù)為7.8。

本刊近期中國學者發(fā)表的論文主要有:

  • Very deep fully convolutional encoder-decoder network based on wavelet transform for art image fusion in cloud computing environment

    Author: Chen, Tong; Yang, Juan

  • A human activity recognition method using wearable sensors based on convtransformer model

    Author: Zhang, Zhanpeng; Wang, Wenting; An, Aimin; Qin, Yuwei; Yang, Fazhi

  • PDRF-Net: a progressive dense residual fusion network for COVID-19 lung CT image segmentation

    Author: Lu, Xiaoyan; Xu, Yang; Yuan, Wenhao

  • Temperature and humidity prediction of mountain highway tunnel entrance road surface based on improved Bi-LSTM neural network

    Author: Tao, Rui; Peng, Rui; Wang, Hao; Wang, Jie; Qiao, Jiangang

英文介紹

Evolving Systems雜志英文介紹

Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).

Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.

The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as

Evolving Systems methodology

Evolving Neural Networks and Neuro-fuzzy Systems

Evolving Classifiers and Clustering

Evolving Controllers and Predictive models

Evolving Explainable AI systems

Evolving Systems applications

but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.

The journal is encompassing contributions related to:

1) Methods of machine learning, AI, computational intelligence and mathematical modelling

2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics

3) Applications in engineering, business, social sciences.

中科院SCI分區(qū)

Evolving Systems雜志中科院分區(qū)信息

2023年12月升級版
綜述:
TOP期刊:
大類:計算機科學 4區(qū)
小類:

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
計算機:人工智能 4區(qū)

2022年12月升級版
綜述:
TOP期刊:
大類:計算機科學 4區(qū)
小類:

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
計算機:人工智能 4區(qū)

2021年12月舊的升級版
綜述:
TOP期刊:
大類:計算機科學 4區(qū)
小類:

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
計算機:人工智能 4區(qū)

2021年12月基礎版
綜述:
TOP期刊:
大類:工程技術 4區(qū)
小類:

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
計算機:人工智能 4區(qū)

2021年12月升級版
綜述:
TOP期刊:
大類:計算機科學 4區(qū)
小類:

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
計算機:人工智能 4區(qū)

中科院SCI分區(qū):是中國科學院文獻情報中心科學計量中心的科學研究成果。期刊分區(qū)表自2004年開始發(fā)布,延續(xù)至今;2019年推出升級版,實現(xiàn)基礎版、升級版并存過渡,2022年只發(fā)布升級版,期刊分區(qū)表數(shù)據(jù)每年底發(fā)布。 中科院分區(qū)為4個區(qū)。中科院分區(qū)采用刊物前3年影響因子平均值進行分區(qū),即前5%為該類1區(qū),6%~20%為2區(qū)、21%~50%為3區(qū),其余的為4區(qū)。1區(qū)和2區(qū)雜志很少,雜志質量相對也高,基本都是本領域的頂級期刊。

JCR分區(qū)(2023-2024年最新版)

Evolving Systems雜志 JCR分區(qū)信息

按JIF指標學科分區(qū)
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
收錄子集:SCIE
分區(qū):Q3
排名:101 / 197
百分位:

49%

按JCI指標學科分區(qū)
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
收錄子集:SCIE
分區(qū):Q3
排名:122 / 198
百分位:

38.64%

JCR分區(qū):JCR分區(qū)來自科睿唯安公司,JCR是一個獨特的多學科期刊評價工具,為唯一提供基于引文數(shù)據(jù)的統(tǒng)計信息的期刊評價資源。每年發(fā)布的JCR分區(qū),設置了254個具體學科。JCR分區(qū)根據(jù)每個學科分類按照期刊當年的影響因子高低將期刊平均分為4個區(qū),分別為Q1、Q2、Q3和Q4,各占25%。JCR分區(qū)中期刊的數(shù)量是均勻分為四個部分的。

CiteScore 評價數(shù)據(jù)(2024年最新版)

Evolving Systems雜志CiteScore 評價數(shù)據(jù)

  • CiteScore 值:7.8
  • SJR:0.746
  • SNIP:1.022
學科類別 分區(qū) 排名 百分位
大類:Mathematics 小類:Control and Optimization Q1 10 / 130

92%

大類:Mathematics 小類:Modeling and Simulation Q1 25 / 324

92%

大類:Mathematics 小類:Control and Systems Engineering Q1 57 / 321

82%

大類:Mathematics 小類:Computer Science Applications Q1 167 / 817

79%

歷年影響因子和期刊自引率

投稿經(jīng)驗

Evolving Systems雜志投稿經(jīng)驗

該雜志是一本國際優(yōu)秀雜志,在國際上有較高的學術影響力,行業(yè)關注度很高,已被國際權威數(shù)據(jù)庫SCIE收錄,該雜志在COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE綜合專業(yè)領域專業(yè)度認可很高,對稿件內容的創(chuàng)新性和學術性要求很高,作為一本國際優(yōu)秀雜志,一般投稿過審時間都較長,投稿過審時間平均 ,如果想投稿該刊要做好時間安排。版面費不祥。該雜志近兩年未被列入預警名單,建議您投稿。如您想了解更多投稿政策及投稿方案,請咨詢客服。

免責聲明

若用戶需要出版服務,請聯(lián)系出版商:TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121。